Skip to main content
Log in

Morphological Basis of a Conditioned Reflex in the Honeybee Apis Mellifera L.

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review summarizes studies directed to seeking the neuroanatomical basis of associative learning (conditioned olfactory proboscis-extension feeding reflex) in honeybees. Data on the structure of the bee brain are presented. Parallel pathways involved in responses to conditioned and unconditioned stimuli are demonstrated. The contributions of various brain structures and specific neurons (VUMmx1, PE1) to forming the conditioned reflex are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Voskresenskaya, “The role of the mushroom bodies of the supraesophageal ganglion in conditioned reflexes in the honeybee,” Dokl. Akad. Nauk. SSSR, 112, 964–967 (1957).

    Google Scholar 

  2. Yu. Konorski, Integrative Brain Activity [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  3. I. A. Levchenko, Information Transmission on the Coordinates of Food Sources in Honeybees [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  4. M. E. Lobashev, “Parallel studies – analogous and homologous series of the development of the main properties of nervous activity in animal phylogenesis,” in: Proc. 2nd Sci. Conf. Evolutionary Physiology in Memory of Academician L. A. Orbeli [in Russian], Leningrad (1960), pp. 16–23.

  5. M. E. Lobashev, N. G. Lopatina, I. A. Nikitina, and E. G. Chesnokova, “Orientation of honeybees using visual above-ground stimuli,” Pchelovodstvo, 10, 31–33 (1961).

    Google Scholar 

  6. N. G. Lopatina, Signal Activity in the Honeybee Family [in Russian], Nauka, Leningrad (1971).

    Google Scholar 

  7. N. G. Lopatina and E. G. Chesnokova, “Conditioned reflexes and memory in the honeybee,” Zh. Vyssh. Nerv. Deyat., 42, No. 5, 890–903 (1992).

    CAS  Google Scholar 

  8. G. A. Mazokhin-Porshnyakov, S. A. Semenova, and I. A. Milevskaya, “Similarity in the behavior of insects and vertebrates in solving difficult visual tasks,” Zh. Vyssh. Nerv. Deyat., 29, No. 1, 101–107 (1979).

    Google Scholar 

  9. I. P. Pavlov, Lectures on the Functioning of the Cerebral Cortex. Complete Collection of Works [in Russian], USSR Academy of Sciences, Moscow (1927), Vol. 4.

  10. A. Fessar, The Role of Neural Networks in the Transmission of Sensory Information. A Theory of Associations in Sensory Systems [Russian translation], G. D. Smirnov (ed.), Mir, Moscow (1964), pp. 81–99.

  11. R. Abel, J. Rybak, and R. Menzel, “Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera,” J. Comp. Neurol., 37, 363–383 (2001).

    Article  Google Scholar 

  12. G. Arnold, C. Masson, and S. Budharugsa, “Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone Apis mellifera,” Cell Tiss. Res., 242, 593–605 (1985).

    Article  Google Scholar 

  13. N. Balderrama, “One trial learning in the American cockroach, Periplaneta americana,” J. Insect Physiol., 26, 4990504 (1980).

    Article  Google Scholar 

  14. E. A. Bernays and J. Lee, “Food aversion learning in the polyphagous grasshopper Schistocerca americana,” Physiol. Entomol., 13, 131–137 (1988).

    Article  Google Scholar 

  15. G. Bicker, “Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee,” Miscosc. Res. Tech., 45, 175–183 (1999).

    Google Scholar 

  16. G. Bicker, S. Schafer, and T. J. Kingan, “Mushroom body feedback interneurons in the honeybee show GABA-like immunoreactivity,” Brain Res., 60, 394–397 (1985).

    Article  Google Scholar 

  17. M. E. Bitterman, R. Menzel, A. Fietz, and S. Schäfer, “Classical conditioning of proboscis extension in honeybee (Apis mellifera),” J. Comp. Physiol., 97, 107–119 (1983).

    CAS  Google Scholar 

  18. M. Denker, R. Finke, F. Schaupp, et al., “Neural correlates of odor learning in the honeybee,” Eur. J. Neurosci., 31, 119–133 (2010).

    Article  PubMed  Google Scholar 

  19. J. C. Eccles, The Neurophysiological Basis of Mind. The Principles of Neurophysiology, Oxford University Press, Oxford (1953).

    Google Scholar 

  20. B. Ehmer and W. Gronenberg, “Segregation of visual input to the mushroom bodies in honeybee (Apis mellifera)” J. Comp. Neurol., 451, 362–373 (2002).

    Article  PubMed  Google Scholar 

  21. J. Erber, T. Masuhr, and R. Menzel, “Localization of short-term memory in the brain of the bee, Apis mellifera,” Physiol. Entomol., 5, 343–358 (1980).

    Article  Google Scholar 

  22. T. Faber and R. Menzel, “Visualizing a mushroom body response to a conditioned odor in honeybees,” Naturwissenschaften, 88, 472–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. R.-J. Fan, P. Anderson, and B. S. Hansson, “Behavioural analysis of olfactory conditioning in the moth Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae),” J. Exp. Biol., 200, 2969–2976 (1997).

    PubMed  Google Scholar 

  24. R.-J. Fan and B. S. Hansson, “Olfactory conditioning in the moth Spodoptera littoralis,” Physiol. Behav., 72, 159–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. K. Frisch, “Der Farbensinn und Formensinn der Biene,” Zool. Jahrb. Physiol. Abt., 35, 1–88 (1915).

    Google Scholar 

  26. G. C. Galizia, S. L. McIlwrath, and R. Menzel, “A digital threedimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy,” Cell Tiss. Res., 295, 383–394 (1999).

    Article  CAS  Google Scholar 

  27. O. Ganeshina and R. Menzel, “GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscope study,” J. Comp. Neurol., 437, 335–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. J. Gascuel and C. Masson, “A quantitative ultrastructural study of the honeybee antennal lobe,” Tiss. Cell, 23, 341–355 (1991).

    Article  CAS  Google Scholar 

  29. M. Guirfa, “Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well,” J. Comp. Physiol. Ser. A. Neuroethol. Sens. Neural. Behav. Physiol., 193, No. 8, 801–824 (2007).

    Article  Google Scholar 

  30. W. Gronenberg, “Subdivisions of hymenopteran mushroom body calyces by their afferent supply,” J. Comp. Neurol., 435, 474–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. B. Grünewald, “Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera,” J. Comp. Neurol., 404, 114–126 (1999).

    Article  PubMed  Google Scholar 

  32. B. Grünewald, “Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee Apis mellifera,” J. Comp. Physiol. Ser. A, 185, 565–576 (1999).

    Article  Google Scholar 

  33. M. Haehnel and R. Menzel, “Sensory representation and learningrelated plasticity in mushroom body extrinsic feedback neurons of the protocerebral tract,” Front. Syst. Neurosci., 4, Art. 161, 1–16 (2010).

    Article  Google Scholar 

  34. M. Hammer, “An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees,” Nature, 366, 59–63 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. M. Hammer, “The neural basis of associative reward learning in honeybees,” Trends Neurosci., 20, 245–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. M. Hammer and R. Menzel, “Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees,” Learn, Mem., 5, 146–156 (1998).

    CAS  Google Scholar 

  37. D. O. Hebb, The Organization of Behavior. A Neuropsychological Theory, Wiley, New York (1949).

    Google Scholar 

  38. M. Heisenberg, “Genetic approach to learning and memory (mnemogenetics) in Drosophila melanogaster,” in: Fundamentals of Memory Formation: Neuronal Plasticity and Brain Function, B. Rahmann (ed.), Gustav Fischer Verlag, Stuttgart (1989), pp. 3–45.

  39. M. Heisenberg, “What do the mushroom bodies do for the insect brain? An introduction,” Learn. Mem., 5, No. 1, 1–10 (1998).

    CAS  PubMed  Google Scholar 

  40. U. Homberg, “Processing of antennal information in extrinsic mushroom body neurons of the bee brain,” J. Comp. Physiol. Ser. A, 154, 825–836 (1984).

    Article  Google Scholar 

  41. Y. Homberg and J. Erber, “Response characteristics and identification of extrinsic mushroom body neurons of the bee,” Z. Naturforsch., 34, 612–615 (1979).

    Google Scholar 

  42. B. Hourcade, T. Muenz, J.-C. Sandoz, et al., “Long-term memory leads to synaptic reorganization in the mushroom bodies: A memory trace in the insect brain?” J. Neurosci., 30, No. 18, 6461–6465 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. E. R. Kandel, “The molecular biology of memory storage: a dialogue between genes and synapses,” Science, 294, 1030–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. F. C. Kenyon, “The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda,” J. Comp. Neurol., 6, 133–210 (1896).

    Article  Google Scholar 

  45. S. Kirschner, C. J. Kleineidam, C. Zube, et al., “Dual olfactory pathway in the honeybee Apis mellifera,” J. Comp. Neurol., 499, 933–952 (2006).

    Article  PubMed  Google Scholar 

  46. M. Kuwabara, “Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica,” J. Fac. Sci. Hokkaido Univ. (Ser VI. Zool.), 13, 458–464 (1957).

    Google Scholar 

  47. D. Laloi, J. S. Sandoz, A. L. Picard-Nizou, et al., “Olfactory conditioning of the proboscis extension in bumble bees,” Entomol. Exp. Appl., 90, 123–129 (1999).

    Article  Google Scholar 

  48. M. Lindauer, “General sensory physiology. Orientation in space,” Fortschr. Zool., 16, 58–140 (1963).

    CAS  PubMed  Google Scholar 

  49. J. Mauelshagen, “Neural correlates of olfactory learning in an identified neuron in the honey bee brain,” J. Neurophysiol., 69, 609–625 (1993).

    CAS  PubMed  Google Scholar 

  50. R. Menzel, “Searching for the memory trace in a minibrain, the honeybee,” Learn. Mem., 8, 53–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. R. Menzel, “Memory dynamics in the honeybee,” J. Comp. Physiol. (Ser. A), 185, 323–340 (1999).

    Article  Google Scholar 

  52. R. Menzel, C. Durst, J. Erber, et al., “The mushroom bodies in the honeybee: from molecules to behavior. Neural basis for adaptations,” in: Fortschritte der Zoologie, K. Schildberger and N. Elsner (eds.), Gustav Fischer Verlag, Stuttgart (1993), Vol. 39, pp. 81–102.

  53. R. Menzel and M. Giurfa, “Cognitive architecture of a minibrain: The honeybee,” Trends Cogn. Sci., 5, 62–71 (2001).

    Article  PubMed  Google Scholar 

  54. R. Menzel, M. Giurfa, B. Gerber, and F. Hellstern, “Elementary and configural forms of memory in an insect: the honeybee,” in: Learning: Rule Extraction and Representation, A. D. Friederici and R. Menzel (eds.), Walter de Gruyter, Berlin (1999), pp. 259–282.

    Google Scholar 

  55. R. Menzel and G. Manz, “Neural plasticity of mushroom bodyextrinsic neurons in the honeybee brain,” J. Exp. Biol., 208, No. 22, 4317–4332 (2005).

    Article  PubMed  Google Scholar 

  56. T. Menzel and U. Müller, “Learning and memory in honeybees: from behavior to neural substrates,” Annu. Rev. Neurosci., 19, 379–404 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. P. G. Mobbs, “The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies,” Phil. Trans Roy. Soc. (Ser. B), 298, 309–354 (1982).

    Article  Google Scholar 

  58. R. Okada, J. Rybak, G. Manz, and R. Menzel, “Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain,” J. Neurosci., 27, 11736–11747 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. S. Oleskevich, J. D. Clements, and M. V. Srinivasan, “Long-term synaptic plasticity in the honeybee,” J. Neurophysiol., 78, No. 1, 528–532 (1997).

    CAS  PubMed  Google Scholar 

  60. D. Raubenheimer and J. Blackshaw, “Locusts learn to associate visual stimuli with drinking,” J. Insect Behav., 7, 569–575 (1994).

    Article  Google Scholar 

  61. J. Rybak and J. Mauelshagen, “The PE1 neuron of the honeybee – an efferent pathway from the mushroom bodies to the protocerebral lobe,” in: Proc. 22nd Gottingen Neurobiol. Conf., N. Elsner and H. Breer (eds.), Georg Thieme, Stuttgart (1994), Vol. II.

  62. J. Rybak and R. Menzel, “Anatomy of the mushroom bodies in the honeybee brain: the neuronal connections of the alpha-lobe,” J. Comp. Neurol., 334, 444–465 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. J. Rybak and R. Menzel, “Integrative properties of the Pe1-neuron, a unique mushroom body output neuron,” Learn. Mem., 5, 133–145 (1998).

    CAS  PubMed  Google Scholar 

  64. J. Rybak and R. Menzel, “Mushroom body of the honeybee,” in: Handbook of Brain Microcircuits, M. Gordon et al. (eds.), Oxford University Press, Oxford (2010), pp. 433–438.

    Chapter  Google Scholar 

  65. M. Sakura and M. Mizunami, “Olfactory learning and memory in the cockroach Periplaneta americana,” Zool. Sci., 18, 21–28 (2001).

    Article  Google Scholar 

  66. U. Schroter, D. Malun, and R. Menzel, “Innervation pattern of suboesophageal VUM neurons in the honeybee brain,” Cell Tiss. Res., 326, No. 3, 647–667 (2007).

    Article  Google Scholar 

  67. U. Schroter and R. Menzel, “A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract,” J. Comp. Neurol., 465, 168–178 (2003).

    Article  PubMed  Google Scholar 

  68. I. Sinakevitch, S. Birman, and B. H. Smith, “An octopamine receptor (AmOA1/OAMB) is expressed in inhibitory neurons in olfactory learning and memory centers in the honeybee and the fruit fly,” Neuroscience 2009, Abstr. No. 350.6/V31, Society for Neuroscience, Chicago.

  69. N. J. Strausfeld, “Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes,” J. Comp. Neurol., 450, 4–33 (2002).

    Article  PubMed  Google Scholar 

  70. P. Szyszka, M. Ditzen, A. Galkin, et al., “Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies,” J. Neurophysiol., 94, 3303–3313 (2005).

    Article  PubMed  Google Scholar 

  71. P. Szyszka, A. Galkin, and R. Menzel, “Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body,” Front. Syst. Neurosci., 2, 1–10 (2008).

    Article  Google Scholar 

  72. K. Takeda, “Classical conditioned response in the honey bee,” J. Insect Physiol., 6, 168–179 (1961).

    Article  CAS  Google Scholar 

  73. W. H. Thorpe, Learning and Instinct in Animals, Methuen, London (1963).

    Google Scholar 

  74. T. Tully and W. G. Quinn, “Classical conditioning and retention in normal and mutant Drosophila melanogaster,” J. Comp. Physiol. A, 157, No. 2, 263–277 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shvetsov.

Additional information

Translated Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 62, No. 6, pp. 654–663, November–December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvetsov, A.V., Zachepilo, T.G. Morphological Basis of a Conditioned Reflex in the Honeybee Apis Mellifera L.. Neurosci Behav Physi 44, 156–162 (2014). https://doi.org/10.1007/s11055-014-9890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9890-9

Keywords

Navigation