Advertisement

Neuroscience and Behavioral Physiology

, Volume 44, Issue 8, pp 945–950 | Cite as

Effects of Ionotropic Glutamate Receptor Blockers on Pentylenetetrazole-Induced Seizures in Krushinskii–Molodkina Rats

  • K. Kh. Kim
  • A. V. Zaitsev
  • V. V. Lavrent’eva
  • E. P. Zhabko
  • S. I. Vataev
  • N. Ya. Lukomskaya
  • L. G. Magazanik
Article
  • 36 Downloads

Krushinskii–Molodkina (KM) rats have a genetic predisposition to increased audiogenic convulsive readiness and respond to sound signals with clonic-tonic convulsive seizures reminiscent of epileptic attacks in humans. The aims of the present work were to compare the neurological manifestations of the convulsant pentylenetetrazol (corazol) in Wistar and KM rats, i.e., to identify the contribution of genetically caused audiogenic convulsive readiness, and to assess the abilities of the NMDA receptor blockers memantine and 1-phenylcyclohexylamine (IEM-1921) to prevent the actions of pentylenetetrazol in KM rats. Convulsive reactions to administration of pentylenetetrazol were significantly stronger in KM rats than in Wistar rats, and deaths in KM rats were 2.1 times more frequent. Both blockers demonstrated the ability to reduce convulsive reactions to administration of pentylenetetrazol; the prophylactic action of IEM-1921 was more marked. IEM-1921 decreased the mean intensity of convulsive seizures by 2 points on a 5-point scale, while the total duration of generalized seizures decreased 41-fold. IEM-1921 completely prevented deaths among the animals, while memantine produce no more than a tendency to a decrease in lethality (68% in controls, 50% after administration of memantine). The results obtained here provide evidence that NMDA glutamate receptors play an important role in the molecular mechanisms of convulsive syndromes of different etiologies.

Keywords

memantine IEM-1921 (1-phenylcyclohexylamine) convulsion models NMDA blockers epilepsy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Vataev, E. P. Zhabko, N. Ya. Lukomskaya, et al., “Effects of memantine on convulsive reactions and the organization of sleep in Krushinskii–Molodkina rats with inherited predisposition to audiogenic convulsions,” Ros. Fiziol. Zh., 95, No. 8, 802–812 (2009).Google Scholar
  2. 2.
    N. Ya. Lukomskaya, S. I. Vataev, E. P. Zhabko, and L. G. Magazanik, “Effects of ionotropic glutamate receptor channel blockers on audiogenic convulsive reactions in Krushinskii–Molodkina rats,” Ros. Fiziol. Zh., 98, No. 4, 449–460 (2012).Google Scholar
  3. 3.
    N. Ya. Lukomskaya, V. V. Lavrent’eva, L. A. Starshinova, et al., “Involvement of glutamate receptors in the occurrence of arecoline tremor in mice,” Ros. Fiziol. Zh., 93, No. 3, 275–282 (2007).Google Scholar
  4. 4.
    N. Ya. Lukomskaya, V. V. Lavrent’eva, L. A. Starshinova, et al., “Effects of ionotropic glutamate receptor channel blockers on the development of pentylenetetrazol kindling in mice,” Ros. Fiziol. Zh., 91, No. 11, 1241–1251 (2005).Google Scholar
  5. 5.
    N. Ya. Lukomskaya, N. I. Rukoyatkina, L. V. Gorbunova, et al., “Comparison of the anticonvulsive activity of organic mono- and dications and their abilities of the inhibit NMDA and AMPA glutamate receptors,” Ros. Fiziol. Zh., 88, No. 9, 1161–1171 (2002).Google Scholar
  6. 6.
    N. Ya. Lukomskaya, N. I. Rukoyatkina, L. V. Gorbunova, et al., “Studies of the role of NMDA and AMPA glutamate receptors in the mechanisms of corazol convulsions in mice,” Ros. Fiziol. Zh., 89, No. 3, 292–301 (2003).Google Scholar
  7. 7.
    N. I. Rukoyatkina, L. V. Gorbunova, V. E. Gmiro, and N. Ya. Lukomskaya, “The ability of new noncompetitive glutamate receptor blockers to weaken motor impairments in animals,” Ros. Fiziol. Zh., 87, No. 9, 1260–1267 (2001).Google Scholar
  8. 8.
    A. F. Semiokhina, I. B. Fedotova, and I. I. Poletaeva, “ Krushinskii–Molodkina rats: studies of audiogenic epilepsy, vascular pathology, and behavior,” Zh. Vyssh. Nerv. Deyat., 56, No. 3, 298–316 (2006).Google Scholar
  9. 9.
    K. V. Bolshakov, V. E. Gmiro, D. B. Tikhonov, and L. G. Magazanik, “Determinants of trapping block of N-methyl-d-aspartate receptor channels,” J. Neurochem., 87, No. 1, 56–65 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    M. E. Brevard, P. Kulkarni, J. A. King, and C. F. Ferris, “Imaging the neural substrates involved in the genesis of pentylenetetrazole-induced seizures,” Epilepsia, 47, No. 4, 745–754 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Consroe, A. Picchioni, and L. Chin, “Audiogenic seizure susceptible rats,” Fed. Proc., 38, No. 10, 2411–2416 (1979).PubMedGoogle Scholar
  12. 12.
    M. G. Corda, M. Orlandi, D. Lecca, and O. Giorgi, “Decrease in GABAergic function induced by pentylenetetrazole kindling in rats: antagonism by MK-801,” J. Pharmacol. Exp. Ther., 262, No. 2, 792–800 (1992).PubMedGoogle Scholar
  13. 13.
    G. De Sarro, E. Palma, N. Costa, et al., “Effects of compounds acting on GABA(B) receptors in the pentylenetetrazole kindling model of epilepsy in mice,” Neuropharmacology, 39, No. 1, 2147–2161 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    M. C. Doretto, J. A. Cores-de-Oliveira, F. Rossetti, and N. Garcia-Cairasco, “Role of the superior colliculus in the expression of acute and kindled audiogenic seizures in Wistar audiogenic rats,” Epilepsia, 50, No. 12, 2563–2574 (2009).PubMedCrossRefGoogle Scholar
  15. 15.
    L. E. Drummond, C. Kushmerick, P. A. Guidine, et al., “Reduced hippocampal GABAergic function in Wistar audiogenic rats,” Braz. J. Med. Biol., 44, No. 10, 1054–1059 (2011).CrossRefGoogle Scholar
  16. 16.
    C. L. Faingold, “The genetically epilepsy-prone rat,” Gen. Pharmacol., 19, No. 3, 331–338 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    C. L. Faingold, “Neuronal networks in the genetically epilepsy-prone rat,” Adv. Neurol., 79, 311–3221 (1999).PubMedGoogle Scholar
  18. 18.
    F. Fang and H. Lei, “Increased hippocampal T2 in a rat model of pentylenetetrazole-induced kindling correlates with seizure scores,” J. Neurol. Sci., 292, No. 1–2, 16–23 (2010).PubMedCrossRefGoogle Scholar
  19. 19.
    H. J. Feng and C. L. Faingold, “Repeated generalized audiogenic seizures induce plastic changes on acoustically evoked neuronal firing in the amygdala,” Brain Res., 932, No. 1–2, 61–69 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    R. S. Fisher, “Animal models of the epilepsies,” Brain Res. Rev., 14, No. 3, 245–278 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Francois, A. Boehrer, and A. Nehlig, “Effects of carisbamate (RWJ-333369) in two models of genetically determined generalized epilepsy, the GAERS and the audiogenic Wistar AS,” Epilepsia, 49, No. 3, 393–399 (2008).PubMedCrossRefGoogle Scholar
  22. 22.
    N. Garcia-Cairasco, “A critical review on the participation of inferior colliculus in acoustic-motor and acoustic-limbic networks involved in the expression of acute and kindled audiogenic seizures,” Hear. Res., 168, No. 1–2, 208–222 (2002).PubMedCrossRefGoogle Scholar
  23. 23.
    S. A. Lipton, “Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond,” Nat. Rev. Drug Discov., 5, No. 2, 160–170 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    W. Loscher, “Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs,” Seizure, 20, No. 5, 359–368 (2011).PubMedCrossRefGoogle Scholar
  25. 25.
    W. Loscher and D. Schmidt, “Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations,” Epilepsy Res., 2, No. 3, 145–181 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    L. H. Magalhaes, L. H. Garcia-Cairasco, A. R. Massensini, et al., “Evidence for augmented brainstem activated forebrain seizures in Wistar Audiogenic Rats subjected to transauricular electroshock,” Neurosci. Lett., 369, No. 1, 19–23 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    M. A. Mirski, Y. C. Tsai, L. A. Rossell, et al., “Anterior thalamic mediation of experimental seizures: selective EEG spectral coherence,” Epilepsia, 44, No. 3, 355–365 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    C. G. Parsons, W. Danysz, and G. Quack, “Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist – a review of preclinical data,” Neuropharmacology, 38, No. 6, 735–767 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    C. E. Ribak and C. L. Morin, “The role of the inferior colliculus in a genetic model of audiogenic seizures,” Anat. Embryol. (Berlin), 191, No. 4, 279–295 (1995).CrossRefGoogle Scholar
  30. 30.
    M. A. Rogawski and R. J. Porter, “Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds,” Pharmacol. Rev., 42, No. 3, 223–286 (1990).PubMedGoogle Scholar
  31. 31.
    M. A. Rogawski, A. Thurkauf, S. Yamaguchi, et al., “Anticonvulsant activities of 1-phenylcyclohexylamine and its conformationally restricted analog 1,1-pentamethylenetetrahydroisoquinoline,” J. Pharmacol. Exp. Ther., 249, No. 3, 708–712 (1989).PubMedGoogle Scholar
  32. 32.
    E. Russo, A. Constanti, G. Ferreri, et al., “Nifedipine affects the anticonvulsant activity of topiramate in various animal models of epilepsy,” Neuropharmacology, 46, No. 6, 865–878 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    A. V. Scarlatelli-Lima, L. H. Magalhaes, M. C. Dorretto, and M. F. Moraes, “Assessment of the seizure susceptibility of Wistar Audiogenic rat to electroshock, pentylenetetrazole and pilocarpine,” Brain Res., 960, No. 1–2, 184–189 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    Y. Takahashi, M. Sadamatsu, H. Kanai, et al., “Changes in immunoreactive neuropeptide Y, somatostatin and corticotropin-releasing factor (CRF) in the brain of a novel epileptic mutant rat, Ihara’s genetically epileptic rat (IGER),” Brain Res., 776, No. 1–2, 255–260 (1997).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Verma-Ahuja, M. S. Evans, and J. A. Espinosa, “Evidence of increased excitability in GEPR hippocampal preceding development of seizure susceptibility,” Epilepsy Res., 31, No. 3, 161–173 (1998).PubMedCrossRefGoogle Scholar
  36. 36.
    Y. You, H. Bai, C. Wang, et al., “Myelin damage of hippocampus and cerebral cortex in rat pentylenetetrazole model,” Brain Res., 1381, 208–216 (2011).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. Kh. Kim
    • 1
  • A. V. Zaitsev
    • 1
  • V. V. Lavrent’eva
    • 1
  • E. P. Zhabko
    • 1
  • S. I. Vataev
    • 1
  • N. Ya. Lukomskaya
    • 1
  • L. G. Magazanik
    • 1
    • 2
  1. 1.I. M. Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations