Advertisement

Neuroscience and Behavioral Physiology

, Volume 44, Issue 1, pp 44–49 | Cite as

An Interneuron Coordinating Tail and Wing Movement in a Pteropod Mollusk

  • L. B. Popova
  • Yu. V. Panchin
Article

We report here studies of the properties of a single neuron (CPB3c) involved in rhythmic movements in an invertebrate animal, i.e., the marine pteropod mollusk Clione limacina. Interneuron CPB3c is cerebropedal neuron “c,” whose body is located in area B3 of the cerebropedal ganglion and whose processes are directed into the pedal ganglia. The operation of this interneuron was studied during locomotion and on stimulation of individual receptor cells in the balance organs, i.e., statocysts. Interneuron CPB3c receives signals from the statocysts and from the locomotor generator, and may support the transmission of the locomotor activity pattern to the tail motoneuron in Clione. Thus, a single interneuron has all the required connections and is ideally suited to performing a coordination function.

Keywords

mollusk statocyst vestibular reaction orientation in space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. P. Tsirulis, “Fine structure of statocyst of the pteropod mollusk Clione limacina,” Zh. Evolyuts. Biokhim. Fiziol., 10, 181–188 (1974).Google Scholar
  2. 2.
    D. L. Alkon, “Responses of hair cells to statocyst rotation,” J. Gen. Physiol., 66, 507–530 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    Y. I. Arshavsky, I. N. Beloozerova, G. N. Orlovsky, et al., “Control of locomotion in marine mollusc Clione limacina, I–III,” Exp. Brain Res., 58, 255–284 (1985).PubMedGoogle Scholar
  4. 4.
    Y. I. Arshavsky, T. G. Deliagina, G. N. Gamkrelidze, et al., “Pharmacologically induced elements of the hunting and feeding behavior in the pteropod mollusk Clione limacina. I. Effects of GABA,” J. Neurophysiol., 69, 512–521 (1993).PubMedGoogle Scholar
  5. 5.
    Y. I. Arshavsky, T. G. Deliagina, G. N. Gamkrelidze, et al., “Pharmacologically induced elements of the hunting and feeding behavior in the pteropod mollusk Clione limacina. II. Effects of physostigmine,” J. Neurophysiol., 69, 522–532 (1993).PubMedGoogle Scholar
  6. 6.
    Y. I. Arshavsky, T. G. Deliagina, I. L. Okshtein, et al., “Defense reaction in the pond snail Planorbis corneus. III. Response to input from statocysts,” J. Neurophysiol., 71, 898–903 (1994).PubMedGoogle Scholar
  7. 7.
    Y. I. Arshavsky, T. G. Deliagina, G. N. Orlovsky, et al., “Analysis of the central pattern generator for swimming in the mollusk Clione,” Ann. N.Y. Acad. Sci., 860, 51–69 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. I. Arshavsky, I. M. Gelfand, and G. N. Orlovsky, Cerebellum and Rhythmical Movements Springer-Verlag, Berlin (1986).Google Scholar
  9. 9.
    Y. I. Arshavsky, G. N. Orlovsky, and Y. V. Panchin, “Comparative study of vestibular control of posture and rhythmic movements,” in: Neurobiological Basis of Human Locomotion, M. Shimamura et al. (eds.), Jpn. Sci. Sot. Press, Tokyo (1991), pp. 213–219.Google Scholar
  10. 10.
    T. G. Deliagina, I. N. Beloozerova, P. V. Zelenin, and G. N. Orlovsky, “Spinal and supraspinal postural networks,” Brain Res. Rev., 1, 212–221 (2008).CrossRefGoogle Scholar
  11. 11.
    T. G. Deliagina and G. N. Orlovsky, “Comparative neurobiology of postural control,” Curr. Opin. Neurobiol., 6, 652–657 (2002).CrossRefGoogle Scholar
  12. 12.
    T. G. Deliagina, G. N. Orlovsky, and Y. I. Arshavsky, “Control of spatial orientation in a mollusc,” Nature, 393, 172–175 (1998).PubMedCrossRefGoogle Scholar
  13. 13.
    T. G. Deliagina, G. N. Orlovsky, A. I. Selverston, and Y. I. Arshavsky, “Neuron mechanisms for control of body orientation in Clione. I. Spatial zones of activity of different neuron groups,” J. Neurophysiol., 82, 687–699 (1999).PubMedGoogle Scholar
  14. 14.
    R. Levi, P. Varona,Y. I. Arshavsky, et al., “Dual sensory-motor function for a molluskan statocyst network,” J. Neurophysiol., 91, 336–345 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Levi, P. Varona, Y. I. Arshavsky, et al., “The role of sensory network dynamics in generating a motor program,” J. Neurosci., 42, 1907–1915 (2005).Google Scholar
  16. 16.
    Y. V. Panchin, “Cellular mechanism for the temperature sensitive spatial orientation in Clione,” Neuroreport, 8, 3345–3348 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. V. Panchin, Y. I. Arshavsky, T. G. Deliagina, et al., “Control of locomotion in marine mollusk Clione limacina. IX. Neuronal mechanisms of spatial orientation,” J. Neurophysiol., 73, 1924–1936 (1995).PubMedGoogle Scholar
  18. 18.
    Y. V. Panchin, L. B. Popova, T. G. Deliagina, et al., “Control of locomotion in marine mollusk Clione limacina. VIII. Cerebropedal neurons,” J. Neurophysiol., 73, 1912–1923 (1995).PubMedGoogle Scholar
  19. 19.
    Y. V. Panchin, R. I. Sadreev, and Y. I. Arshavsky, “Statomotor system in the marine mollusk Clione limacina,” J. Neurophysiol., 73, 407–410 (1995).PubMedGoogle Scholar
  20. 20.
    R. A. Satterlie, “Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator,” Science, 229, 402–404 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    R. A. Satterlie and A. N. Spencer, “Swimming in the pteropod mollusk Clione limacina. 2. Physiology,” J. Exp. Biol., 116, 205–222 (1985).Google Scholar
  22. 22.
    H. G. Wolff, “Statocysts and geotactic behaviour in gastropod molluscs,” Fortschr. Zool., 23, 63–84 (1975).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.A. N. Belozerskii Research Institute for Physicochemical BiologyMoscow State UniversityMoscowRussia
  2. 2.Institute of Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations