Skip to main content
Log in

Tissue and Cell Membrane Lipid Composition in Rats on Adaptation to Highland Conditions

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The effects of the physical factors of highland altitudes (3200 m) on the lipid composition of tissues and cell membranes were studied in rats. Adaptation of the animals to highland conditions was accompanied by changes in tissue phospholipid composition. Adaptive phospholipid re-composition was seen in the lungs, brain, liver, and skeletal muscle, and in the microsomal membrane fractions isolated from them, with increases in the quantities of phosphatidylinositol and phosphatidic acid. Adaptation at low temperature (+10°C) led to more significant changes in lipid peroxidation and phospholipid composition in tissues and membranes than adaptation in thermally neutral conditions (+30°C). Modification of tissue and cell membrane lipid composition in rats in highland conditions appeared to increase the body’s adaptive potential – the animals showed a tendency to increases in physical work capacity and resistance to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Agadzhanyan, Current Questions in Adaptive, Ecological, and Recuperative Medicine [in Russian], Meditsina, Moscow (2006).

    Google Scholar 

  2. N. A. Agadzhanyan and M. M. Mirrakhimov, Mountains and the Resistance of the Body [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  3. Z. I. Barbashova, Acclimation to Hypoxia and its Physiological Mechanisms [in Russian], USSR Academy of Sciences Press, Moscow (1960).

    Google Scholar 

  4. M. J. Berridge, “Molecular basis of internal communications,” V Mire Nauki, 12, 98–109 (1985).

    Google Scholar 

  5. P. Baker and M. M. Mirrakhimov (eds.), The Biology of High-Altitude Peoples [Russian translation], Mir, Moscow (1981).

  6. E. Meddy (ed.), Biochemical Investigations of Membranes [Russian translation], Mir, Moscow (1979).

  7. A. A. Boldyrev, “Oxidative stress and the brain,” Soros. Obraz. Zh., 7, No. 4, 21–28 (2001).

    Google Scholar 

  8. E. Van Lear and K. Stickney, Hypoxia [Russian translation], Meditsina, Moscow (1967).

    Google Scholar 

  9. L. D. Luk’yanova and Yu. I. Kirova, “Effects of hypoxic preconditioning on free-radical processes in the tissues of rats with different levels of tolerance to hypoxia,” Byull. Eksperim. Biol. Med., 3, 263–268 (2011).

    Google Scholar 

  10. V. I. Medvedev, Human Adaptation [in Russian], Institute of the Human Brain, Russian Academy of Medical Sciences (2003).

  11. F. Z. Meerson, Adaptation, Stress, and Prophylaxis [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  12. L. M. Ovsepyan, K. G. Karagezyan, A. V. Medkumyan, and G. V. Zakharyan, “Interaction of oxidative phosphorylation and lipid peroxidation in the brain mitochondrial fraction in hypoxia,” Biokhimiya, 34, 76–79 (2006).

    Google Scholar 

  13. N. N. Sirotinin, Life at Altitude and Altitude Sickness [in Ukrainian], Academy of Sciences of the URSSR, Kiev (1939).

  14. V. N. Orekhovich (ed.), Current Methods in Biochemistry [in Russian], Meditsina (1977).

  15. S. I. Soroko and G. S. Dzhunusova, “Rearrangement of algorithms for interactions between EEG wave components in humans with different types of brain self-regulation mechanisms on adaptation to highland conditions,” Fiziol. Cheloveka, 28, No. 6, 13–23 (2002).

    PubMed  CAS  Google Scholar 

  16. D. Faller and D. Shilds, Molecular Biology of the Cell [in Russian], Binom (2006).

  17. J. Findlay, and U. Evans, Biological Membranes – A Practical Approach [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  18. D. M. Bailey, S. Taudorf, R. M. Berg, et al., “Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?” Am. J. Physiol. Regul. Integr. Physiol., 297, No. 5, 1283–1292 (2009).

    Article  Google Scholar 

  19. C. Behn, O. F. Araneda, A. J. Lianos, et al., “Hypoxia-related lipid peroxidation: evidences, implications, and approaches,” Respir. Physiol. Neurobiol., 158, No. 2–3, 143–150 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. G. Celedon, G. Gonzales, C. P. Sotomayor, and C. Behn, “Membrane lipid dysfunction and band 3 protein changes in human erythrocytes due to acute hypobaric hypoxia,” Am. J. Physiol. Cell. Physiol., 275, 1429–1431 (1998).

    Google Scholar 

  21. N. S. Chandel and G. R. Budinger, “The cellular basis for diverse responses to oxygen,” Free Radic. Biol. Med., 42, 165–174 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. T. Fakashi, F. Motohatsu, S. Shum, and K. Masakuni, “Effect of in vivo exposure to hypoxia on muscarinic cholinergic receptor coupled phosphoinositide turnover in the rat brain,” Brain Res., 482, No. 1, 109–121 (1989).

    Article  Google Scholar 

  23. K. Heise, S. Estevez, and M. Puntarolo, “Effect of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1),” J. Comp. Physiol. Biol., 17, 123–133 (2007).

    Google Scholar 

  24. L. A. Horrocks and G. Y. Sun, “Ethanolamine plasmalogens,” in: Research Methods in Neurochemistry, N. Merrs and R. Rodnight (eds.) (1972), Vol. 1, pp. 223–231.

  25. S. Jackowski and C. O. Rock, “Stimulation of phosphatidylinositol 4,5-bisphosphate phospholipase C activity by phosphatidic acid,” Arch. Biochem. Biophys., 268, No. 2, 516–524 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. V. S. Kamanna, B. V. Bassa, and H. Ganjis, “Bioactive lyso-PL and mesangial cell intracellular signaling pathways,” Histol. Histopathol., 20, 603–613 (2005).

    PubMed  CAS  Google Scholar 

  27. H. Katzir, D. Yeheskely, and G. Eyto, “Role of plasma membrane leaflets in drugs uptake and multidrug resistance,” FEBS J., 277, No. 5, 1234–1244 (2010).

    Article  PubMed  CAS  Google Scholar 

  28. T. Kugimiya, K. Suwa, Y. Inada, et al., “Effects of drug induced reduction in oxyhemoglobin affinity on survival time of mice in severe hypoxic conditions,” Tohoku J. Exp. Med., 144, 315–320 (1984).

    Article  PubMed  CAS  Google Scholar 

  29. B. Lant and K. Storey, “An overview of stress response and hypometabolic strategies in Caenorhabditis elegans: conserved and contrasting signals with the mammalian system,” Int. J. Biol. Sci., 6, 9–50 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. M. H. Lee and R. M. Bell, “Phospholipid functional groups involved in protein kinase C activation, phorbol ester binding and binding to mixed micelles,” J. Biol. Chem., 264, No. 25, 14797–14805 (1989).

    PubMed  CAS  Google Scholar 

  31. T. D. Minyailenko, V. P. Pozharov, and M. M. Seredenko, “Severe hypoxia activates lipid peroxidation in the rat brain,” Chem. Phys. Lipids, 55, 25–28 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. C. Rauch, “On the relationship between drugs, size, cell membrane mechanical properties and high level of multidrug resistance,” Eur. Biophys. J., 38, No. 4, 537–546 (2008).

    Article  PubMed  Google Scholar 

  33. B. Reynafarje, “Biochemical adaptation to chronic hypoxia of high altitude,” Mol. Physiol., 8, 463–471 (1985).

    CAS  Google Scholar 

  34. S. I. Soroko and G. S. Dzhunusova, “Changes in frequency spectrum of bioelectrical activity of cortical and subcortical brain structures in rabbit exposed to experimental and high altitude hypoxia,” in: Thermoregulation and Temperature Adaptation, Minsk (1995), pp. 156–159.

  35. S. Torii, N. Kamura, and Y. Suzuki, “Cyclic AMP represses the hypoxic induction of hypoxia-inducible factors in PC12 cells,” J. Biochem., 146, No. 6, 839–844 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. J. M. Wolf, T. Brummendorf, and F. G. Rathjen, “Membrane interaction by covalently attached phosphatidylinositol,” Biochem. Biophys. Res. Commun., 161, No. 2, 931–938 (1989).

    Article  Google Scholar 

  37. D. Yajima, H. Motani, M. Hayakawa, et al., “The relationship between cell membrane damage and lipid peroxidation under the conditions of hypoxia-reoxygenation: analysis of the mechanism using antioxidants and electron transport inhibitors,” Cell Biochem. Funct., 27, 338–343 (2009).

    Article  PubMed  CAS  Google Scholar 

  38. Y. Yao and F. Qin, “Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor,” PLoS Biology, 7, No. 2, 1371–1380 (2009).

    Article  Google Scholar 

  39. F. Zufall and T. Leinders, “The cellular and molecular basis of adaptation,” Chemical Senses, 35, No. 4, 473–476 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Yakovlev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 1, pp. 137–146, January, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, V.M., Vishnevskii, A.A. & Shanazarov, A.S. Tissue and Cell Membrane Lipid Composition in Rats on Adaptation to Highland Conditions. Neurosci Behav Physi 43, 918–923 (2013). https://doi.org/10.1007/s11055-013-9829-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9829-6

Keywords

Navigation