Neuroscience and Behavioral Physiology

, Volume 43, Issue 8, pp 918–923 | Cite as

Tissue and Cell Membrane Lipid Composition in Rats on Adaptation to Highland Conditions

  • V. M. Yakovlev
  • A. A. Vishnevskii
  • A. S. Shanazarov

The effects of the physical factors of highland altitudes (3200 m) on the lipid composition of tissues and cell membranes were studied in rats. Adaptation of the animals to highland conditions was accompanied by changes in tissue phospholipid composition. Adaptive phospholipid re-composition was seen in the lungs, brain, liver, and skeletal muscle, and in the microsomal membrane fractions isolated from them, with increases in the quantities of phosphatidylinositol and phosphatidic acid. Adaptation at low temperature (+10°C) led to more significant changes in lipid peroxidation and phospholipid composition in tissues and membranes than adaptation in thermally neutral conditions (+30°C). Modification of tissue and cell membrane lipid composition in rats in highland conditions appeared to increase the body’s adaptive potential – the animals showed a tendency to increases in physical work capacity and resistance to hypoxia.


highlands adaptation lipid peroxidation phosphoinositides phospholipids membranes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Agadzhanyan, Current Questions in Adaptive, Ecological, and Recuperative Medicine [in Russian], Meditsina, Moscow (2006).Google Scholar
  2. 2.
    N. A. Agadzhanyan and M. M. Mirrakhimov, Mountains and the Resistance of the Body [in Russian], Nauka, Moscow (1970).Google Scholar
  3. 3.
    Z. I. Barbashova, Acclimation to Hypoxia and its Physiological Mechanisms [in Russian], USSR Academy of Sciences Press, Moscow (1960).Google Scholar
  4. 4.
    M. J. Berridge, “Molecular basis of internal communications,” V Mire Nauki, 12, 98–109 (1985).Google Scholar
  5. 5.
    P. Baker and M. M. Mirrakhimov (eds.), The Biology of High-Altitude Peoples [Russian translation], Mir, Moscow (1981).Google Scholar
  6. 6.
    E. Meddy (ed.), Biochemical Investigations of Membranes [Russian translation], Mir, Moscow (1979).Google Scholar
  7. 7.
    A. A. Boldyrev, “Oxidative stress and the brain,” Soros. Obraz. Zh., 7, No. 4, 21–28 (2001).Google Scholar
  8. 8.
    E. Van Lear and K. Stickney, Hypoxia [Russian translation], Meditsina, Moscow (1967).Google Scholar
  9. 9.
    L. D. Luk’yanova and Yu. I. Kirova, “Effects of hypoxic preconditioning on free-radical processes in the tissues of rats with different levels of tolerance to hypoxia,” Byull. Eksperim. Biol. Med., 3, 263–268 (2011).Google Scholar
  10. 10.
    V. I. Medvedev, Human Adaptation [in Russian], Institute of the Human Brain, Russian Academy of Medical Sciences (2003).Google Scholar
  11. 11.
    F. Z. Meerson, Adaptation, Stress, and Prophylaxis [in Russian], Nauka, Moscow (1981).Google Scholar
  12. 12.
    L. M. Ovsepyan, K. G. Karagezyan, A. V. Medkumyan, and G. V. Zakharyan, “Interaction of oxidative phosphorylation and lipid peroxidation in the brain mitochondrial fraction in hypoxia,” Biokhimiya, 34, 76–79 (2006).Google Scholar
  13. 13.
    N. N. Sirotinin, Life at Altitude and Altitude Sickness [in Ukrainian], Academy of Sciences of the URSSR, Kiev (1939).Google Scholar
  14. 14.
    V. N. Orekhovich (ed.), Current Methods in Biochemistry [in Russian], Meditsina (1977).Google Scholar
  15. 15.
    S. I. Soroko and G. S. Dzhunusova, “Rearrangement of algorithms for interactions between EEG wave components in humans with different types of brain self-regulation mechanisms on adaptation to highland conditions,” Fiziol. Cheloveka, 28, No. 6, 13–23 (2002).PubMedGoogle Scholar
  16. 16.
    D. Faller and D. Shilds, Molecular Biology of the Cell [in Russian], Binom (2006).Google Scholar
  17. 17.
    J. Findlay, and U. Evans, Biological Membranes – A Practical Approach [Russian translation], Mir, Moscow (1990).Google Scholar
  18. 18.
    D. M. Bailey, S. Taudorf, R. M. Berg, et al., “Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?” Am. J. Physiol. Regul. Integr. Physiol., 297, No. 5, 1283–1292 (2009).CrossRefGoogle Scholar
  19. 19.
    C. Behn, O. F. Araneda, A. J. Lianos, et al., “Hypoxia-related lipid peroxidation: evidences, implications, and approaches,” Respir. Physiol. Neurobiol., 158, No. 2–3, 143–150 (2007).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Celedon, G. Gonzales, C. P. Sotomayor, and C. Behn, “Membrane lipid dysfunction and band 3 protein changes in human erythrocytes due to acute hypobaric hypoxia,” Am. J. Physiol. Cell. Physiol., 275, 1429–1431 (1998).Google Scholar
  21. 21.
    N. S. Chandel and G. R. Budinger, “The cellular basis for diverse responses to oxygen,” Free Radic. Biol. Med., 42, 165–174 (2007).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Fakashi, F. Motohatsu, S. Shum, and K. Masakuni, “Effect of in vivo exposure to hypoxia on muscarinic cholinergic receptor coupled phosphoinositide turnover in the rat brain,” Brain Res., 482, No. 1, 109–121 (1989).CrossRefGoogle Scholar
  23. 23.
    K. Heise, S. Estevez, and M. Puntarolo, “Effect of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1),” J. Comp. Physiol. Biol., 17, 123–133 (2007).Google Scholar
  24. 24.
    L. A. Horrocks and G. Y. Sun, “Ethanolamine plasmalogens,” in: Research Methods in Neurochemistry, N. Merrs and R. Rodnight (eds.) (1972), Vol. 1, pp. 223–231.Google Scholar
  25. 25.
    S. Jackowski and C. O. Rock, “Stimulation of phosphatidylinositol 4,5-bisphosphate phospholipase C activity by phosphatidic acid,” Arch. Biochem. Biophys., 268, No. 2, 516–524 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    V. S. Kamanna, B. V. Bassa, and H. Ganjis, “Bioactive lyso-PL and mesangial cell intracellular signaling pathways,” Histol. Histopathol., 20, 603–613 (2005).PubMedGoogle Scholar
  27. 27.
    H. Katzir, D. Yeheskely, and G. Eyto, “Role of plasma membrane leaflets in drugs uptake and multidrug resistance,” FEBS J., 277, No. 5, 1234–1244 (2010).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Kugimiya, K. Suwa, Y. Inada, et al., “Effects of drug induced reduction in oxyhemoglobin affinity on survival time of mice in severe hypoxic conditions,” Tohoku J. Exp. Med., 144, 315–320 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    B. Lant and K. Storey, “An overview of stress response and hypometabolic strategies in Caenorhabditis elegans: conserved and contrasting signals with the mammalian system,” Int. J. Biol. Sci., 6, 9–50 (2010).PubMedCrossRefGoogle Scholar
  30. 30.
    M. H. Lee and R. M. Bell, “Phospholipid functional groups involved in protein kinase C activation, phorbol ester binding and binding to mixed micelles,” J. Biol. Chem., 264, No. 25, 14797–14805 (1989).PubMedGoogle Scholar
  31. 31.
    T. D. Minyailenko, V. P. Pozharov, and M. M. Seredenko, “Severe hypoxia activates lipid peroxidation in the rat brain,” Chem. Phys. Lipids, 55, 25–28 (1990).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Rauch, “On the relationship between drugs, size, cell membrane mechanical properties and high level of multidrug resistance,” Eur. Biophys. J., 38, No. 4, 537–546 (2008).PubMedCrossRefGoogle Scholar
  33. 33.
    B. Reynafarje, “Biochemical adaptation to chronic hypoxia of high altitude,” Mol. Physiol., 8, 463–471 (1985).Google Scholar
  34. 34.
    S. I. Soroko and G. S. Dzhunusova, “Changes in frequency spectrum of bioelectrical activity of cortical and subcortical brain structures in rabbit exposed to experimental and high altitude hypoxia,” in: Thermoregulation and Temperature Adaptation, Minsk (1995), pp. 156–159.Google Scholar
  35. 35.
    S. Torii, N. Kamura, and Y. Suzuki, “Cyclic AMP represses the hypoxic induction of hypoxia-inducible factors in PC12 cells,” J. Biochem., 146, No. 6, 839–844 (2009).PubMedCrossRefGoogle Scholar
  36. 36.
    J. M. Wolf, T. Brummendorf, and F. G. Rathjen, “Membrane interaction by covalently attached phosphatidylinositol,” Biochem. Biophys. Res. Commun., 161, No. 2, 931–938 (1989).CrossRefGoogle Scholar
  37. 37.
    D. Yajima, H. Motani, M. Hayakawa, et al., “The relationship between cell membrane damage and lipid peroxidation under the conditions of hypoxia-reoxygenation: analysis of the mechanism using antioxidants and electron transport inhibitors,” Cell Biochem. Funct., 27, 338–343 (2009).PubMedCrossRefGoogle Scholar
  38. 38.
    Y. Yao and F. Qin, “Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor,” PLoS Biology, 7, No. 2, 1371–1380 (2009).CrossRefGoogle Scholar
  39. 39.
    F. Zufall and T. Leinders, “The cellular and molecular basis of adaptation,” Chemical Senses, 35, No. 4, 473–476 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. M. Yakovlev
    • 1
  • A. A. Vishnevskii
    • 1
  • A. S. Shanazarov
    • 1
  1. 1.Institute of Mountain PhysiologyNational Academy of Sciences of the Kyrgyz RepublicBishkekKyrgyzstan

Personalised recommendations