Advertisement

Neuroscience and Behavioral Physiology

, Volume 43, Issue 6, pp 755–759 | Cite as

An Association between Heart Rate Variability and Levels of Frontal Cortex Activation

  • V. N. Mukhin
  • N. M. Yakovlev
  • V. M. Klimenko
Article
  • 136 Downloads

Published data and our own results suggest that the amplitude of periodic modulations of heart rate are associated with the level of activation of the cerebral cortex. This suggestion was tested by seeking correlational relationships between heart rate periodograms (a measure of the amplitude of periodic modulations of the heart rate at different frequencies) and electroencephalographic assessment of levels of activation of different areas of the cortex. The results provided evidence of a positive relationship between the amplitude of heart rate modulations with a period of about three oscillations per heart rate interval and the level of activation of the frontal cortex.

Keywords

heart rate variability autonomic functions cardiovascular system electroencephalography frequency analysis spectral analysis frontal cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Mukhin and V. M. Klimenko, “The state of mobilization readiness and the frequency structure of heart rate variability,” Ros. Fiziol. Zh. im. I. M. Sechenova, 95, No. 4, 367–375 (2009).Google Scholar
  2. 2.
    R. Haier, S. Karama, and L. Leyba, “MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task,” BMC Res. Notes, 174, No. 2, doi:  10.1186/1756-0500-2-174 (2009).PubMedGoogle Scholar
  3. 3.
    T. Hanakawa, M. Honda, N. Sawamoto, et al., “The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach,” Cerebral Cortex, 12, No. 11, 1157–1170 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    G. M. Goodwin, D. I. McCloskey, and J. H. Mitchell, “Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension,” J. Physiol., 226, No. 1, 173–190 (1972).PubMedGoogle Scholar
  5. 5.
    H. D. Critchley, D. R. Corfield, M. P. Chandler, et al., “Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans,” J. Physiol., 523, No. 1, 259–270 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    R. D. Lane, K. McRae, E. M. Reiman, et al., “Neural correlates of heart rate variability during emotion,” NeuroImage, 44, No. 1, 213–222 (2009).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Steriade, “Arousal: revisiting the reticular activating system,” Science, 27, No. 5259, 225–226 (1996).CrossRefGoogle Scholar
  8. 8.
    M. M. Delmonte, “Physiological responses during meditation and rest,” Biofeedback Self-Regulation, 9, No. 2, 181–200 (1984).CrossRefGoogle Scholar
  9. 9.
    D. R. Morse, J. S. Martin, M. L. Furst, and L. L. Dubin, “A physiological and subjective evaluation of meditation, hypnosis, and relaxation,” Psychosomat. Med., 39, No. 5, 304–324 (1977).Google Scholar
  10. 10.
    H. Benson, J. F. Beary, and M. P. Carol, “The relaxation response,” Psychiatry, 37, No. 1, 37–46 (1974).PubMedGoogle Scholar
  11. 11.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, “Heart rate variability: standards of measurement, physiological interpretation and clinical use,” Circulation, 93, No. 5, 1043–1065 (1996).CrossRefGoogle Scholar
  12. 12.
    R. J. Frysztak and E. J. Neafsey, “The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat,” Brain Res., 643, No. 1–2, 181–193 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    S. L. Buchanan and D. A. Powell, “Cingulothalamic and prefrontal control of autonomic function,” in: Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook, Birkhauser, Boston (1993), pp. 381–414.Google Scholar
  14. 14.
    B. Maxwell, D. A. Powell, and S. L. Buchanan, “Multiple- and single-unit activity in area 32 (prelimbic region) of the medial prefrontal cortex during Pavlovian heart rate conditioning in rabbits,” Cerebral Cortex, 4, No. 3, 230–246 (1994).PubMedCrossRefGoogle Scholar
  15. 15.
    C. M. Gibbs, L. B. Prescott, and D. A. Powell, “A comparison of multiple-unit activity in the medial prefrontal cortex and agranular insular cortices during Pavlovian heart rate conditioning in rabbits,” Exp. Brain Res., 89, No. 3, 599–610 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    C. M. Gibbs and D. A. Powell, “Single-unit activity in the dorsomedial prefrontal cortex during the expression of discriminative bradycardia in rabbits,” Behav. Brain Res., 43, No. 1, 79–92 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    C. M. Gibbs and D. A. Powell, “Neuronal correlates of classically conditioned bradycardia in the rabbit: studies of the medial prefrontal cortex,” Brain Res., 442, No. 1, 86–96 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    R. D. Berger, J. P. Saul, and R. J. Cohen, “Transfer function analysis of autonomic regulation. I. Canine atrial rate response,” Am. J. Physiol. Heart Circul. Physiol., 256, No. 1, H142–H152 (1989).Google Scholar
  19. 19.
    J. P. Saul, R. D. Berger, P. Albrecht, et al., “Transfer function analysis of the circulation: unique insights into cardiovascular regulation,” Am. J. Physiol., 261, No. 4, Part 2, H1231–H1245 (1991).PubMedGoogle Scholar
  20. 20.
    G. Parati, J. P. Saul, M. Di Rienzo, and G. Mancia, “Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal,” Hypertension, 25, No. 6, 1276–1286 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    D. L. Eckberg, “Human sinus arrhythmias as an index of vagal cardiac outflow,” J. Appl. Physiol., 54, No. 4, 961–966 (1983).PubMedGoogle Scholar
  22. 22.
    P. G. Katona and F. Jih, “Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control,” J. Appl. Physiol., 39, No. 5, 801–805 (1975).PubMedGoogle Scholar
  23. 23.
    J. P. Saul, R. D. Berger, M. H. Chen, and R. J. Cohen, “Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia,” Am. J. Physiol. Heart Circul. Physiol., 256, No. 1, H153–H161 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. N. Mukhin
    • 1
  • N. M. Yakovlev
    • 1
  • V. M. Klimenko
    • 1
  1. 1.Research Institute Experimental Medicine S30Russian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations