Neuroscience and Behavioral Physiology

, Volume 43, Issue 4, pp 464–469 | Cite as

Creatine Amides: Perspectives for Neuroprotection

  • T. D. Vlasov
  • S. G. Chefu
  • A. E. Baisa
  • M. V. Leko
  • S. V. Burov
  • O. S. Vesyolkina

The neuroprotective activity of creatine amides – amino acid derivatives of creatine – was studied in a model of cerebral ischemia created by transient occlusion of the middle cerebral artery (OMCA) in rats. The neuroprotective effect of treatment with glycine (creatinylglycine ethyl ester acetate), phenylalanine (creatinyl-L-phenylalaninamide acetate), tyrosine (creatinyl-L-tyrosinamide acetate), and gamma-aminobutyric acid (creatinyl-γ-aminobutyric acid ethyl ester acetate) derivatives were studied after administration 1 h before 30-min cerebral ischemia. Brain damage was assessed by staining brain slices with triphenyltetrazolium chloride 48 h after ischemia. As compared with the control group, all the creatine amides studied significantly decreased the sizes of areas of brain damage (p < 0.05). However, the amides of creatine with tyrosine, phenylalanine, and GABA showed marked toxicity after intravenous administration and could only be used intraperitoneally. The amide of creatine and glycine was not toxic on administration of intravenous boluses at a dose of 1 mmol/kg. Conclusions: amides of creatine and amino acids decrease ischemic damage after transient occlusion of the middle cerebral artery in rats.


creatine derivatives cerebral ischemia neuroprotection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Burov and A. N. Khromov, Russian Federation Patent No. 2354645, “Creatine amides, methods of preparation, substances with neuroprotective actions.”Google Scholar
  2. 2.
    O. I. Pisarenko, V. S. Shul'zhenko, I. M. Studneva, and M. G. Lepilin, “Effects of metabolic substrates and mannitol on the efficacy of protection against cardioplegia in isolate rat heart,” Kardiologiya, No. 1, 71–75 (2003).Google Scholar
  3. 3.
    M. M. Aarts and M. Tymianski, “Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors,” Biochem. Pharmacol., 66, No. 6, 877–886 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    R. F. Abett, M. MacMillan, M. J. Sole, et al., “Free tyrosine levels of rat brain and tissues with sympathetic innervation following administration of L-tyrosine in the presence and absence of large neutral amino acids,” J. Nutr., 114, No. 5, 835–839 (1984).Google Scholar
  5. 5.
    K. H. Adcock, J. Nedelcu, T. Loenneker, et al., “Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia,” Dev. Neurosci., 24, No. 5, 382–388 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    S. M. Ahmed, S. H. Amir, T. Mansoor, et al., “Complications following accidental administration of 1.5% glycine intravenously,” Acta Anaesthesiol. Scand., 52, No. 4, 570–571 (2008).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Belayev, R. Busto, W. Zhao, et al., “Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation,” Brain Res., 833, No. 2, 181–190 (1999).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Cascio, “Structure and function of the glycine receptor and related nicotinicoid receptors,” J. Biol. Chem., 279, No. 19, 19383–19386 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    V. Eulenberg, W. Armsen, H. Betz, and J. Gomeza, “Glycine transporters: essential regulators of neurotransmission,” Trends Biochem. Sci., 30, No. 6, 325–333 (2005).CrossRefGoogle Scholar
  10. 10.
    J. Koizuma, Y. Yoshida, T. Nakazawa, and G. Ooneda, “Experimental studies of ischemic brain edema: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area,” Jpn. J. Stroke, 8, 1–8 (1986).CrossRefGoogle Scholar
  11. 11.
    M. Lensman, D. E. Korzhevskii, V. O. Mourovets, et al., “Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat,” Brain Res., 1114, No. 1, 187–194 (2006).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Lipton, “Ischemic cell death in brain neurons,” Physiol. Rev., 79, No. 4, 1421–1685 (1999).Google Scholar
  13. 13.
    E. Z. Longa, P. R. Weinstein, S. Carlson, and R. Cummins, “Reversible middle cerebral artery occlusion without craniectomy in rats,” Stroke, 20, 84–91 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Lunardi, A. Parodi, L. Perasso, et al., “The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds,” Neuroscience, 142, No. 4, 991–997 (2006).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Meyer, S. Kleinschmidt, S. Gottschling, et al., “Gamma-hydroxybutyric acid: neurotransmitter, sedative and party drug,” Wien. Med. Wochenschr., 155, No. 13–14, 315–322 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Ohtsuki, M. Tachikawa, T. Takanaga, et al., “The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain,” J. Cereb. Blood Flow Metab., 22, 1327–1335 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Oishi and S. Szabo, “Tyrosine increases tissue dopamine concentration in the rat,” J. Neurochem., 42, No. 3, 894–896 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Perasso, A. Cupello, G. L. Lunardi, et al., “Kinetics of creatine in blood and brain after intraperitoneal injection in the rat,” Brain Res., 974, 37–42 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    L. Perasso, E. Adriano, P. Ruggeri, et al., “In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate,” Brain Res., 1285, 158–163 (2009).PubMedCrossRefGoogle Scholar
  20. 20.
    K. Prass, G. Royl, U. Lindauer, et al., “Improved reperfusion and neuroprotection by creatine in a mouse model of stroke,” J. Cereb. Blood Flow Metab., 27, No. 3, 452–459 (2007).PubMedCrossRefGoogle Scholar
  21. 21.
    G. S. Salomons and M. Wyss (eds.), Creatine and Creatine Kinase in Health and Disease, Springer (2007).Google Scholar
  22. 22.
    A. Sarup, O. M. Larsson, and A. Schousboe, “GABA transporters and GABA-transaminase as drug targets,” Curr. Drug Targets CNS Neurol. Disord., 2, No. 4, 269–277 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    A. L. Sirén and H. L Ehrenreich, “Erythropoietin – a novel concept for neuroprotection,” Eur. Arch. Psychiatry Clin. Neurosci., 251, No. 4, 179–184 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    A. F. Sved, J. D. Fernstrom, and R. J. Wurtman, “Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats,” Proc. Natl. Acad. Sci. USA, 76, No. 7, 3511–3514 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Tachikawa, M. Fukaya, T. Terasaki, et al., “Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis,” Eur. J. Neurosci., 20, 144–160 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. D. Vlasov
    • 1
  • S. G. Chefu
    • 1
  • A. E. Baisa
    • 1
  • M. V. Leko
    • 2
  • S. V. Burov
    • 2
  • O. S. Vesyolkina
    • 3
  1. 1.I. P. Pavlov St. Petersburg State Medical UniversitySt. PetersburgRussia
  2. 2.Institute of High Molecular Weight CompoundsRussian Academy of SciencesSt. PetersburgRussia
  3. 3.VERTEKS CompanySt. PetersburgRussia

Personalised recommendations