Neuroscience and Behavioral Physiology

, Volume 42, Issue 9, pp 1001–1007 | Cite as

Development of the Connections of the Primary Visual Cortex with the Movement Analysis Center: the Role of the Visual Environment

  • N. S. Merkulieva
  • A. A. Mikhalkin
  • N. I. Nikitina
  • F. N. Makarov

The plasticity of visual corticocortical connections during ontogeny in an experimentally altered visual environment (stimulation with flashing lights) was studied by investigating the development of axonal connections between the primary visual cortex (field 17) and the visual movement analysis center in cats. A method based on retrograde axon transport using horseradish peroxidase as marker was used to study the distribution in field 17 of start neurons sending afferent fibers to the posteromedial part of the lateral suprasylvian sulcus in 16 kittens aged 5 and 12–14 weeks in conditions of a normal visual environment or with stimulation with flashing light (15 Hz). Sessions of stimulation with flashing light were found to lead to impairment to the normal development of the ordered organization of connections between these visual areas, with decreases in the area of labeling and the number of start neurons in field 17. These data clarify the structural grounds for the cortical mechanisms underlying impairments to the processing of information relating to the movement of visual objects in stimulated kittens.


visual cortex corticocortical connections rhythmic light stimulation ontogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Merkulieva and F. N. Makarov, “Effects of short-term and prolonged stimulation with flashing light on the cytochrome oxidase module system in layer IV of the primary visual cortex in kittens,” Ros. Fiziol. Zh. im. I. M. Sechenova, 94, 557–565 (2008).Google Scholar
  2. 2.
    N. S. Merkulieva and F. N. Makarov, “Ontogenic characteristics of the organization of corticocortical connections in the primary visual cortex and lateral suprasylvian area in the cat brain,” Ros. Fiziol. Zh. im. I. M. Sechenova, 96, 271–279 (2010).Google Scholar
  3. 3.
    N. S. Merkulieva and F. N. Makarov, “Development of the ordered organization of corticocortical connections between visual field 17 and the PMLS during postnatal ontogeny in cats,” Morfologiya, 138, No. 6, 5–13 (2010).Google Scholar
  4. 4.
    N. S. Merkulieva and F. N. Makarov, “The retinotopic organization of the posteromedial area of the lateral suprasylvian sulcus in analysis of the pattern of corticocortical connections with field 17 in the cat,” Ros. Fiziol. Zh. im. I. M. Sechenova, 97, 113–118 (2011).Google Scholar
  5. 5.
    N. S. Merkulieva and N. I. Nikitina, “A method for construction twodimensional distribution patterns of labeled neurons in the cortex and their quantitative analysis,” Morfologiya, 138, No. 5, 11–17 (2010).Google Scholar
  6. 6.
    D. M. Berson, “Cat lateral suprasylvian cortex:Y-cell inputs and corticotectal projection,” J. Neurophysiol., 53, 544–556 (1985).PubMedGoogle Scholar
  7. 7.
    D. Cai, A. V. Rangan, and D. W. McLaughlin, “Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1,” Proc. Natl. Acad. Sci. USA, 102, 5868–5873 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Cynader, N. Berman, and A. Hein, “Cats reared in stroboscopic illumination: effects on receptive fields in visual cortex,” Proc. Natl. Acad. Sci. USA, 70, 1353–1354 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    N. W. Daw, Visual Development, Springer, New York (2006).Google Scholar
  10. 10.
    D. G. Flood and P. D. Coleman, “Demonstration of orientation columns with [14C]2-deoxyglucose in a cat reared in a striped environment,” Brain Res., 173, 538–542 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    C. D. Gilbert and T. N. Wiesel, “Interleaving projection bands in cortico-cortical connections,” Soc. Neurosci. Abstr., 6, 315 (1980).Google Scholar
  12. 12.
    S. Grant and S. Shipp, “Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of the cat cortex: a physiological and connectional study,” Vis. Neurosci., 6, 315–338 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    A. M. Grigonis and E. H. Murphy, “Organization of callosal connections in the visual cortex of the rabbit following neonatal enucleation, dark rearing, and strobe rearing,” J. Comp. Neurol., 312, 561–572 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    W. Guido, P. D. Spear, and L. Tong, “How complete is physiological compensation in extrastriate cortex after visual cortex damage in kittens?” Exp. Brain Res., 91, 455–466 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    A. L. Humphrey and A. B. Saul, “Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure,” J. Neurophysiol., 80, 2991–3004 (1998).PubMedGoogle Scholar
  16. 16.
    N. Kato, S. Kawaguchi, and H. Miyata, “Postnatal development of afferent projections to the lateral suprasylvian visual area in the cat: an HRP study,” J. Comp. Neurol., 252, 543–554 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Kennedy and G. A. Orban, “Response properties of visual cortical neurons in cats reared in stroboscopic illumination,” J. Neurophysiol., 49, 686–704 (1983).PubMedGoogle Scholar
  18. 18.
    M. A. McCall, L. Tong, and P. D. Spear, “Development of neuronal responses in cat posteromedial lateral suprasylvian visual cortex,” Brain Res., 447, 67–78 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    M.-M. Mesulam, “The blue reaction product in horseradish peroxidase neurohistochemistry: incubation parameters and visibility,” J. Histochem. Cytochem., 24, 1273–1280 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    B. G. Ouellette, K. Minville, D. Boire, et al., “Complex motion selectivity in PMLS cortex following early lesions of primary visual cortex in the cat,” Vis. Neurosci., 24, 53–64 (2007).PubMedCrossRefGoogle Scholar
  21. 21.
    L. Palmer, A. Rosenquist, and R. Tusa, “The retinotopic organization of the lateral suprasylvian areas in the cat,” J. Comp. Neurol., 177, 237–256 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Pasternak and L. J. Leinin, “Pattern and motion vision in cats with selective loss of cortical directional sensitivity,” J. Neurosci., 6, 938–945 (1986).PubMedGoogle Scholar
  23. 23.
    B. R. Payne and S. G. Lomber, “Neuroplasticity in the cat’s visual system. Origin, termination, expansion, and increased coupling of the retino-geniculate-middle suprasylvian visual pathway following early ablations of areas 17 and 18,” Exp. Brain Res., 121, 334–349 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    D. J. Price and T. J. Zumbroich, “Postnatal development of corticocortical efferents from area 17 in the cat’s visual cortex,” J. Neurosci., 9, 600–613 (1989).PubMedGoogle Scholar
  25. 25.
    J. P. Rauschecker and W. Schrader, “Effects of monocular strobe rearing on kitten striate cortex,” Exp. Brain Res., 68, 525–532 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    A. C. Rosenquist, “Connections of visual cortical areas in the cat,” in: Cerebral Cortex, Plenum Press, New York, London (1985), pp. 81–117.Google Scholar
  27. 27.
    J. L. Schwartz and P. S. Goldman-Rakic, “Prenatal specification of callosal connections in rhesus monkey,” J. Comp. Neurol., 307, 144–162 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    H. Sherk and G. A. Fowler, “Lesions of extrastriate cortex and consequences for visual guidance during locomotion,” Exp. Brain Res., 144, 159–171 (2002).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Shipp and S. Grant, “Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex,” Vis. Neurosci., 6, 339–355 (1991).PubMedCrossRefGoogle Scholar
  30. 30.
    P. D. Spear, L. Tong, and M. A. McCall, “Functional influence of areas 17, 18, and 19 on lateral suprasylvian cortex in kittens and adult cats: implications for compensation following early visual cortex damage,” Brain Res., 447, 79–91 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    P. D. Spear, L. Tong, and C. Sawyer, “Effects of binocular deprivation on responses of cells in cat’s lateral suprasylvian visual cortex,” J. Neurophysiol., 49, 366–382 (1983).PubMedGoogle Scholar
  32. 32.
    J. R. Villablanca, T. D. Schmanke,V. Lekht, and H. A. Crutcher, “The growth of the feline brain from late fetal into adult life. I. A morphometric study of the neocortex and white matter,” Dev. Brain Res., 122, 11–20 (2000).CrossRefGoogle Scholar
  33. 33.
    T. N. Wiesel and D. H. Hubel, “Single-cells responses in striate cortex of kittens deprived of vision in one eye,” J. Neurophysiol., 26, 1003–1017 (1963).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • N. S. Merkulieva
    • 1
  • A. A. Mikhalkin
    • 1
  • N. I. Nikitina
    • 1
  • F. N. Makarov
    • 1
  1. 1.Neuromorphology Laboratory (Director: Professor F. N. Makarov), I. P. Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations