Skip to main content
Log in

Structural Basis of the Inhibitory Functions of the Efferent Systems of the Parietal Cortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2013

The relative quantitative distributions of all associative and descending efferent fibers and the ultrastructural organization of terminals of the parietal cortex (fields 5 and 7) in the caudate nucleus (NC) and red nucleus (NR) in cats were studied after local point lesions to the cortex in these fields. The maximal projections of associative fibers were found to be to the fundal fields of the motor cortex and the Clare–Bishop field, with a moderate projection to fields 31 and 19, and occasional degenerating fibers to fields 1, 2, 3a, 3d, 30, and 23. Among descending fibers, the most extensive projections were to the NC, NR, reticular nucleus, and midbrain nuclei, as well as to the pontine nuclei, where immunocytochemical studies revealed mainly GABAergic terminals. Electron microscopic studies led to the suggestion that the influences of the parietal cortex are mediated by axospinous synapses of intermediate short-axon spiny cells of the dorsolateral part of the head of the NC and axodendritic synapses of Golgi II cells in the parvocellular part of the NR. Given the maximal involvement of the fundal fields of the motor cortex and the inhibitory subcortical (NC) and stem nuclei (NR, reticular nuclei of the thalamus), midbrain, and pontine nuclei), we suggest that they serve as the morphological substrate mediating the inhibitory integrative function of the parietal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. S. Adrianov, Principles of Organization of Brain Integrative Activity [in Russian], Meditsina, Moscow (1976).

    Google Scholar 

  2. A. S. Amatuni, Functional Organization and Involvement of the Central Nuclei in the Integrative Activity of the Cerebellum [in Russian], Erevan, Republic of Armenia (1987).

  3. E. B. Aushanyan and V. A. Otellin, The Caudate Nucleus [in Russian], Nauka, Leningrad (1976).

    Google Scholar 

  4. A. S. Batuev, Evolution of the Functions of the Parietal Lobes of the Brain [in Russian], Nauka, Leningrad (1973).

    Google Scholar 

  5. A. S. Batuev, Higher Integrative Systems of the Brain [in Russian], Nauka, Leningrad (1981).

    Google Scholar 

  6. V. M. Bekhterev, Basic Theory of Brain Function [in Russian], Brockhouse and Ephron, St. Petersburg (1907–1907), Vols. 6–7.

  7. Yu. S. Borodkin and P. D. Shabanov, Neurochemical Mechanisms of the Extinction of Memory Traces [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  8. T. A. Bragina, “Degeneration of afferent in the reticular nucleus of the thalamus in the cat after injection of kainic acid into the parietal cortex,” in: The Associative Systems of the Brain [in Russian], Nauka, Leningrad (1985), pp. 59–61.

  9. D. Burlidge, Mechanisms of the Brain [Russian translation], Mir, Moscow (1965).

    Google Scholar 

  10. M. O. Gurevich, A. A. Khachaturyan, and A. Khachaturov, “A method for cytoarchitectonic mapping and measurement of fields. The cytoarchitectonics of the cerebral cortex in felines,” in: Higher Nervous Activity [in Russian], Biomedgiz, Moscow (1929),Vol. 1, pp. 171–184.

  11. N. M. Ipekchyan, “Projection of the parietal cortex to the visual,” Biol. Zh. Armenii, 43, No. 10–11, 918–922 (1990).

    Google Scholar 

  12. N. M. Ipekchyan, “Features of the organization of the parietal cortex,” in: Proceedings of the “Electron Microscopy” Conference [in Russian], Armenian Society of Electron Microscopists Press, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Russian Academy of Natural Sciences, Erevan (1995).

  13. N. M. Ipekchyan, “Comparative analysis of the corticotectal projections of the motor and parietal areas of the brain,” in: Proc. Conf. Structural-Functional, Neurochemical, and Immunochemical Patterns of Brain Asymmetry and Plasticity, Russian Academy of Medical Sciences and Research Institute of the Brain, Moscow (2007), pp. 268–272.

  14. N. M. Ipekchyan, “Comparative analysis of the quantitative characteristics of the corticothalamic projections of fields 5 and 7 of the parietal cortex,” Morfologiya, 137, No. 1, 14–16 (2010).

    Google Scholar 

  15. N. M. Ipekchyan and L. A. Avakyan, “Connections between the various fields of the parietal cortex and caudate nucleus in the cat brain,” Arkh. Anat., 95, No. 7, 18–24 (1988).

    Google Scholar 

  16. N. M. Ipekchyan and L. A. Avakyan, “Characteristics of the structural organization of the axon terminals of the parietal cortex in the caudate nucleus,” in: Proceedings of the “Striate System in Health and Pathology” Symposium [in Russian], Nauka, Leningrad (1988), pp. 41–42.

  17. N. M. Ipekchyan and L. A. Avakyan, “Ultrastructural changes in the red nucleus evoked by lesioning of the parietal cortex,” in: Structural-Functional and Neurochemical Patterns of Brain Asymmetry and Plasticity [in Russian], Russian Academy of Medical Sciences and Research Institute of the Brain, Moscow (2005), pp. 137–140.

  18. N. M. Ipekchyan and O. G. Baklavadzhyan, “Projections of fields 5 and 7 to subdivisions of the sensorimotor area of the cerebral cortex,” Neirofiziologiya, 20, No. 3, 319–326 (1988).

    Google Scholar 

  19. N. M. Ipekchyan and O. G. Baklavadzhyan, “Distribution of efferents from the parietal cortex to the cingulate gyrus,” Biol. Zh. Armenii, 42, No. 9–10, 942–945 (1989).

    Google Scholar 

  20. N. M. Ipekchyan and O. G. Baklavadzhyan, “Connections of the parietal cortex with the lateral suprasylvian gyrus (the Clare–Bishop field) in the auditory cortex,” Neirofiziologiya, 22, No. 6, 739–745 (1990).

    Google Scholar 

  21. N. M. Ipekchyan and O. G. Baklavadzhyan, “Comparative analysis of the descending projections of fields 5 and 7 of the parietal cortex to the brainstem in cats,” Morfologiya, 117, No. 2, 29–32 (2000).

    Google Scholar 

  22. I. I. Konorski, Integrative Brain Activity [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  23. I. I. Korenok, Neural Mechanisms of Afferent and Efferent Functions of the Parietal Associative Area of the Cerebral Cortex: Author’s Abstract of Doctoral Thesis in Biological Sciences, Leningrad (1990).

  24. T. A. Leontovich, Neural Organization of the Subcortical Formations of the Forebrain [in Russian], Meditsina, Moscow (1978).

    Google Scholar 

  25. V. A. Maiskii and F. N. Serkov, “Structure and connections of the neostriatum as an integrative subcortical center. Retrograde axonal transport of luminescent dyes and horseradish peroxidase,” in: The Associative Systems of the Brain [in Russian], Nauka, Leningrad (1885), pp. 70–74.

  26. V. Mountcastle, “An organizing principle of brain function: An elementary module and a distributed system,” in: The Mindful Brain [Russian translation], Mir, Moscow (1981), pp. 15–67.

  27. V. A. Otellin and M. N. Baikovskaya, “Functional-morphological analysis of various corticocaudal connections,” Fiziol. Zh. SSSR, 65, No. 1, 15–21 (1979).

    PubMed  CAS  Google Scholar 

  28. G. I. Polyakov, “Results of studies of the development of the neural structure of the cortical ends of analyzers in humans,” in: Structure and Function of Human Analyzers during Ontogeny [in Russian], Medgiz, Moscow (1961), pp. 5–24.

  29. G. I. Polyakov, Principles of the Neural Organization of the Brain [in Russian], Moscow State University Press, Moscow (1965).

    Google Scholar 

  30. N. N. Traugott, S. I. Kaidanova, and S. A. Meerson, “Functions of the thalamoparietal associative system in humans,” in: Evolution of the Functions of the Thalamic Lobe of the Brain [in Russian], Nauka, Leningrad (1973), pp. 118–188.

  31. A. A. Ukhtomskii, Selected Works [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  32. V. V. Fanardzhyan and Dzh. S. Sarkisyan, The Neural Mechanisms of the Red Nucleus [in Russian], Nauka, Moscow (1993).

  33. G. I. Allen and N. Tsukahara, “Cerebrocebellar communication system,” Physiol. Rev., 54, No. 4, 957–1006 (1974).

    PubMed  CAS  Google Scholar 

  34. R. A. Andersen and C. A. Buneo, “Intentional maps in posterior parietal cortex,” Anne. Rev. Neuroscience, 25, 189–220 (2002).

    Article  CAS  Google Scholar 

  35. B. G. Border, and G. A. Michailoff, “GABAergic neural elements in the rat basilar pons: electron microscopic immunochemistry,” J. Comp. Neurol., 295, No. 1, 123–135 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. P. Bordal, “The corticopontine projection in the rhesus monkey. Origin and principles of organization,” Brain, 101, No. 2, 251–283 (1978).

    Article  Google Scholar 

  37. P. Brodal, “The cerebropontocerebellar pathway: salient features of its organization,” Exp. Brain Res., 6, Supplement, 108–133 (1982).

    Article  Google Scholar 

  38. P. Bordal, “Principles of organization of the corticopontocerebellar projections to crus II in the cat with particular reference to the parietal cortical areas,” Neuroscience, 10, No. 3, 621–638 (1983).

    Article  Google Scholar 

  39. P. Brodal, G. Mihailoff, B. Border, et al., “GABA-containing neurons in the pontine nuclei of the rat, cat and monkey. An immunocytochemical study,” Neuroscience, 25, No. 1, 27–45 (1988).

    Article  PubMed  CAS  Google Scholar 

  40. C. Cavada and P. S. Goldman-Rakic, “Posterior parietal cortex in rhesus monkey. I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections,” J. Comp. Neurol., 287, No. 4, 393–421 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. Y. E. Cohen and R. A. Andersen, “A common reference frame for movement plans in the posterior parietal cortex,” Nat. Rev. Neuroscience, 3, 553–562 (2002).

    Article  CAS  Google Scholar 

  42. E. Conde and H. Conde, “Study of the morphology of the cells of the red nucleus of the cat by the Golgi–Cox method,” Brain Res., 53, No. 2, 249–271 (1973).

    Article  PubMed  CAS  Google Scholar 

  43. I. Darian-Smith “Cortical projections of thalamic neurons excited by mechanical stimulation of the face of the cat,” J. Physiol., 171, No. 2, 339–360 (1964).

    PubMed  CAS  Google Scholar 

  44. H.-J. Freund, “Premotor areas in man,” in: The Motor System in Neurobiology, Elsevier Biomedical Press, Amsterdam, New York, Oxford (1985), pp. 332–335.

  45. U. Hasband and R. Passigkam, “The role of premotor and parietal cortex in the direction of action,” Brain Res., 240, No. 2, 368–372 (1982).

    Article  Google Scholar 

  46. R. Hassler, J. W. Chung, U. Rinne, and A. Wagner, “Selective degeneration of two out of the nine types of synapses in cat caudate nucleus after cortical lesions,” Exp. Brain Res., 31, No. 1, 67–80 (1978).

    Article  PubMed  CAS  Google Scholar 

  47. R. Hassler and K. Muhs-Clement, “Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze,” J. Hirnforsch., 6, No. 6, 377–421 (1964).

    Google Scholar 

  48. C. R. Houser, I. E. Vaughn, R. P. Barber, and E. Roberts, “GABA neurons are the major cell type of the nucleus reticularis thalami,” Brain Res., 200, No. 2, 341–354 (1980).

    Article  PubMed  CAS  Google Scholar 

  49. D. R. Humphrey, D. Bulyalert, and D. J. Reed, “Organization of the cortical projections to the parvocellular red nucleus (pRN) in the monkey,” in: Horology and Function of the Red Nucleus, CNRS, Marseille (1986), p. 35.

  50. D. R. Humphrey, R. Gold, and D. J. Reed, “Sizes, laminar and topographic origins of cortical projections to the motor divisions of the red nucleus in the monkey,” J. Comp. Neurol., 225, No. 1, 75–94 (1984).

    Article  PubMed  CAS  Google Scholar 

  51. T. Janeskog and Y. Padel, “Cerebral cortical areas of origin of excitation and inhibition of rubrospinal cells in the cat,” Exp. Brain Res., 50, No. 2/3, 309–320 (1983).

    Google Scholar 

  52. E. G. Jones, J. D. Coulter, H. Burton, and R. Porter, “Cells of origin and terminal distribution of corticostriate fibers arising in the sensorimotor cortex of monkeys,” J. Comp. Neurol., 173, No. 1, 53–80 (1977).

    Article  PubMed  CAS  Google Scholar 

  53. E. G. Jones, J. D. Coulter, and S. H. C. Hendry, “Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys,” J. Comp. Neurol., 181, No. 2, 291–348 (1978).

    Article  PubMed  CAS  Google Scholar 

  54. E. G. Jones and T. P. S. Powell, “Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral connexions,” Brain, 92, No. 4, 477–502 (1969).

    Article  PubMed  CAS  Google Scholar 

  55. E. G. Jones and T. S. Powell, “An anatomical study of converging sensory pathways within the cerebral cortex of the monkey,” Brain, 93, No. 4, 793–820 (1970).

    Article  PubMed  CAS  Google Scholar 

  56. P. B. Jonson, A. Angelucci, R. M. Zipara, D. Minchaechi, M. Bentivoglio, and R. Caminiti, “Segregation and overlap of callosal and association neurons in frontal and parietal cortices of primates: A spectral and coherency analysis,” J. Neurosci., 9, No. 7, 2313–2326 (1989).

    Google Scholar 

  57. J. F. Kalaska, R. Caminiti, and A. Georgopoulos, “Cortical mechanisms related to the direction of two-dimensional arm movement: Relations in parietal area 5 and comparison with motor cortex,” Exp. Brain Res., 51, No. 2, 247–260 (1983).

    Article  PubMed  CAS  Google Scholar 

  58. Y. Kang, K. Endo, T. Araki, and A. Mitani, “Dual mode of projections from the parietal to motor cortex in the cat,” Exp. Brain Res., 62, No. 2, 281–292 (1986).

    Article  PubMed  CAS  Google Scholar 

  59. K. Kawamura and M. Chiba, “Cortical neurons projecting to the pontine neurons in the cat. An experimental study with the horseradish peroxidase technique,” Exp. Brain Res., 35, No. 2, 269–285 (1979).

    Article  PubMed  CAS  Google Scholar 

  60. J. M. Kemp and T. P. S. Powell, “The corticostriate projection in the monkey,” Brain, 93, No. 3, 525–546 (1970).

    Article  PubMed  CAS  Google Scholar 

  61. J. M. Kemp and T. P. S. Powell, “The site of termination of afferent fibers in the caudate nucleus,” Phil. Trans. Roy. Soc. Lond. B. Biol. Sci., 262, 413–427 (1971).

    Article  CAS  Google Scholar 

  62. R. T. Knight, J. Singh, and D. L. Wood, “Pre-movement parietal lobe input to human sensorimotor cortex,” Brain Res., 498, No. 1, 190–194 (1989).

    Article  PubMed  CAS  Google Scholar 

  63. G. Koch, M. Fernandez del Olmo, B. Cheeran, et al., “Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex,” J. Neurosci., 27, 6815–6822 (2007).

    Article  PubMed  CAS  Google Scholar 

  64. G. Koch, M. Fernandez del Olmo, B. Cheeran, et al., “Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space,” J. Neurosci., 28, 5944–5953 (2008).

    Article  PubMed  Google Scholar 

  65. G. Koch, D. Ruge, B. Cheeran, et al., “TMS activation of interhemispheric pathways between the posterior parietal cortex and contralateral motor cortex,” J. Physiol., 587, No. 17, 4281–4292 (2009).

    Article  PubMed  CAS  Google Scholar 

  66. H. G. J. M. Kuypers, “Corticobulbar connections to the pons and lower brain-stem in man. An anatomical study,” Brain, 81, No. 3, 364–388 (1958).

    Article  PubMed  CAS  Google Scholar 

  67. H. G. J. M. Kuypers and D. G. Lawrence, “Cortical projection to the brain stem,” Brain Res., 4, No. 2/3, 151–188 (1967).

    Article  PubMed  CAS  Google Scholar 

  68. J. Lehman and S. Z. Lancer, “The striatal cholinergic interneurons: synaptic target of dopaminergic terminals,” Neuroscience, 10, No. 4, 1105–1120 (1983).

    Article  Google Scholar 

  69. R. L. Macdonald, J. Q. Kang, and M. J. Gallagher, “Mutation in GABA receptor subunits associated with genetic epilepsies,” J. Physiol., 588, No. 11, 1861–1869 (2010).

    Article  PubMed  CAS  Google Scholar 

  70. J. Massion and K. Sasaki “Cerebro-cerebellar interactions: Solved and unsolved problems,” in: Cerebellar Interactions, Elsevier, Amsterdam (1979), pp. 261–287.

  71. K. Mechelse, “The localization of the thalamo-cortical and corticothalamic fibers in the internal capsule and thalamus of the cat,” J. Hirnforsch., 2, No. 4, 408–453 (1962).

    Google Scholar 

  72. G. A. Mihailoff, B. G. Border, and S. A. Azizi, “Electron microscopic, immunochemical and electrophysiological studies of the basilar pontine nuclei in the rat and monkey,” Anat. Rec., 223, 79 (1989).

    Google Scholar 

  73. V. B. Mountcastle, “The parietal system and some higher brain functions,” Cereb. Cortex, 5, 377–390 (1995).

    Article  PubMed  CAS  Google Scholar 

  74. E. Murakami, H. Katsumary, K. Saito, and N. Tsukahara, “A quantitative study of synaptic reorganization in red nucleus neurons after lesion of the nucleus interpositus of the cat: an electron microscopic study involving intracellular injection of horseradish peroxidase,” Brain Res., 242, No. 1, 41–53 (1982).

    Article  PubMed  CAS  Google Scholar 

  75. J. N. Neal, R. C. A. Pearson, and T. P. S. Powell, “The cortico-cortical connections of area 7b (or PRF) in the parietal lobe of the monkey,” Brain Res., 419, neuron 1/2, 341–346 (1987).

    Google Scholar 

  76. A. Nieoullon and N. Dustricier, “Increased glutamate decarboxylase activity in red nucleus of the adult cat after cerebellar lesion,” Brain Res., 224, No. 1, 129–139 (1981).

    Article  PubMed  CAS  Google Scholar 

  77. A. Nieoullon, C. Vuillon-Cacciuttolo, D. Andre, and O. Bosler, “Postlesional plasticity of GABA neurons in the red nucleus,” in: Histology and Function of the Red Nucleus, CNRS, Marseille (1986), p. 36.

  78. H. Oka and K. Jinnai, “Cerebrocerebellar connections through the parvocellular part of the red nucleus,” in: Integrative Control Function of the Brain, Elsevier, Amsterdam (1978), Vol. 1, pp. 184–186.

  79. C. R. Olson and I. Jeffers, “Organization of cortical and subcortical projections to the area 6m of the cat,” J. Comp. Neurol., 266, No. 1, 73–94 (1987).

    Article  PubMed  CAS  Google Scholar 

  80. T. Oshima, “Corticospinal collateral actions on pontine nuclei of the cat,” in: Integrative Control Functions of the Brain, Elsevier, Amsterdam (1978), Vol. 1, pp. 180–181.

  81. T. Oshima, “The microphysiology of pontine nuclei in the cat concerning the concept of internal feedback,” Dev. Neurosci., 6, 125–139 (1979).

    Google Scholar 

  82. K. Otsuka and R. Hassler, “Über Aufbau und Gleiberung der corticalen Sehsphärebei der Katze,” Arch. Psychiat. Nervenkr., 203, 212–234 (1962).

    Article  PubMed  CAS  Google Scholar 

  83. D. N. Pandya and B. Seltzer, “Intrinsic connection and architectonics of posterior parietal cortex in the rhesus monkey,” J. Comp. Neurol., 204, No. 2, 196–210 (1982).

    Article  PubMed  CAS  Google Scholar 

  84. R. C. A. Pearson, P. Brodal, and T. P. S. Powell, “The projection of the thalamus upon the parietal lobe in monkey,” Brain Res., 144, No. 1, 1430148 (1978).

    Article  Google Scholar 

  85. G. Pizzini, G. Tredici, and A. Miani, “Corticorubral projection in the cat. An experimental electron microscopic study,” J. Submicroscop. Cytol., 7, 231–238 (1975).

    Google Scholar 

  86. C. B. Ribak, J. E. Vaughn, and E. Roberts, “The GABA neurons and their axon terminals in rat corpus striatum demonstrated by GAD immunocytochemistry,” J. Comp. Neurol., 187, No. 2, 261–284 (1979).

    Article  PubMed  CAS  Google Scholar 

  87. E. Rinvik, “Thalamic commissural connection in the rat,” Neurosci. Lett., 44, No. 3, 311–316 (1984).

    Article  PubMed  CAS  Google Scholar 

  88. R. T. Robertson and T. J. Cunningham, “Organization of corticothalamic projections from parietal cortex in cat,” J. Comp. Neurol., 199, No. 4, 569–585 (1981).

    Article  PubMed  CAS  Google Scholar 

  89. R. T. Robertson and E. Rinvik, “The corticothalamic projections from parietal region of the cerebral cortex. Experimental degenerative studies in the cat,” Brain Res., 51, 61–79 (1973).

    Article  PubMed  CAS  Google Scholar 

  90. A. Sadun, “Differential distribution of cortical terminations in the cat red nucleus,” Brain Res., 99, No. 1, 145–151 (1975).

    Article  PubMed  CAS  Google Scholar 

  91. H. Sakata, J. Takaoka, A. Kawarasaki, and A. Shibutani, “Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey,” Brain Res., 64, No. 1, 85–102 (1973).

    Article  PubMed  CAS  Google Scholar 

  92. F. Sanides and J. Hoffman, “Cyto- and myeloarchitecture of the visual cortex of the cat and surrounding integration cortices,” J. Hirnforsch., 11, No. 1/2, 79–104 (1969).

    PubMed  CAS  Google Scholar 

  93. J. Singh and R. T. Knight, “Effects of posterior association cortex lesions on brain potentials preceding self-initiated movements,” J. Neurosci., 13, No. 15, 1820–1829 (1993).

    PubMed  CAS  Google Scholar 

  94. K. R. Smith and J. T. Kittler, “The cell biology of synaptic inhibition in health and disease,” Curr. Opin. Neurobiol., 20, 550–556 (2010).

    Article  PubMed  CAS  Google Scholar 

  95. M. Taira, S. Mine, A. Georgopoulos, et al., “Parietal cortex neurons of the monkey related to the visual guidance of hand movement,” Exp. Brain Res., 83, No. 1, 29–36 (1990).

    Article  PubMed  CAS  Google Scholar 

  96. N. Tsukahara and D. G. Fuller, “Conductance changes during pyramidally induced postsynaptic potentials in red nucleus neurons,” J. Neurophysiol., 32, No. 1, 35–42 (1969).

    PubMed  CAS  Google Scholar 

  97. Sh. K. Tyagarajan and J.-M. Fritschy, “GABA receptors, gephyrin and homeostatic synaptic plasticity,” J. Physiol., 588, No. 1, 101–106 (2010).

    Article  PubMed  CAS  Google Scholar 

  98. G. Vuillon-Cacciuttolo, O. Bosler, and A. Nieoullon, “GABA neurons in the cat red nucleus: a biochemical and immunohistochemical demonstration,” Neurosci. Lett., 52, No. 1, 129–134 (1984).

    Article  PubMed  CAS  Google Scholar 

  99. D. D. Wang and A. R. Kriegstein, “Defining the role of GABA in cortical development,” J. Physiol., 587, No. 9, 1873–1879 (2009).

    Article  PubMed  CAS  Google Scholar 

  100. R. S. Waters and H. Asanuma, “Movement of facial muscles following intracortical microstimulation (ICMS) along the lateral branch of the posterior bank of the ansate sulcus, area 5a and 5b in the cat,” Exp. Brain Res., 50, No. 2/3, 459–463 (1983).

    PubMed  CAS  Google Scholar 

  101. J. T. Weber and T. C. T. Yin, “Subcortical projections of the inferior parietal cortex (area 7) in the stumtailed monkey,” J. Comp. Neurol., 224, No. 2, 206–230 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ipekchyan.

Additional information

Translated from Morfologiya, Vol. 140, No. 6, pp. 10–18, November–December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ipekchyan, N.M. Structural Basis of the Inhibitory Functions of the Efferent Systems of the Parietal Cortex. Neurosci Behav Physi 42, 988–995 (2012). https://doi.org/10.1007/s11055-012-9667-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-012-9667-y

Keywords

Navigation