Neuroscience and Behavioral Physiology

, Volume 42, Issue 6, pp 643–650 | Cite as

Protective Effects of Early Ischemic Preconditioning in Focal Cerebral Ischemia in Rats: The Role of Collateral Blood Circulation

  • A. A. Shmonin
  • A. E. Baisa
  • E. V. Melnikova
  • V. N. Vavilov
  • T. D. Vlasov

The aim of the present work was to test the hypothesis that early ischemic preconditioning provides effective protection of the brain against ischemic damage via effects on cerebral blood flow. Experiments were performed using male Wistar rats anesthetized with thiopental using two methods to produce ischemia: 1) ligation of the left common carotid and left middle cerebral arteries; 2) endovascular occlusion of the middle cerebral artery for 30 and 60 min. Preconditioning was modeled using two 5-min episodes of bilateral occlusion of the common carotid arteries with 5-min reperfusion periods. Infarct size was assessed by staining with triphenyltetrazolium chloride; major vessel blood flow was measured by Doppler ultrasonography, and ischemic zones were measured by staining with Evans blue. Preconditioning led to significant decreases in infarct size after ischemia for 30 and 60 min and after ischemia without reperfusion. Preconditioning had no effect on measures of major vessel blood flow in the middle cerebral artery, as indicated by Doppler ultrasonography data. The ischemic preconditioning group showed no decreases in ischemic zone size 5 min after occlusion of the left middle cerebral artery, while 30–40 min after the onset of ischemia there was a reduction in the ischemic zone in the preconditioning groups. Along with cytoprotective effects, ischemic preconditioning decreased ischemic zone size and had marked additional infarct-limiting effects in focal transient and permanent cerebral ischemia in rats.


early ischemic preconditioning transient and permanent focal cerebral ischemia collateral circulation cerebral blood flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. O. Blokhin, M. M. Galagudza, T. D. Vlasov, E. M. Nifontov, and N. N. Petrishchev, “Relationship between the infarct-limiting effect of ischemic preconditioning of the myocardium on the duration of test ischemia of the myocardium,” Ros. Fiziol. Zh. im. I. M. Sechenova, 94, No. 7, 785–789 (2008).Google Scholar
  2. 2.
    T. D. Vlasov, D. E. Korzhevskii, and E. A. Polyakova, “Ischemic adaptation of the brain in rats as a method of protecting the endothelium from ischemic/reperfusional damage,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No. 1, 40–48 (2004).Google Scholar
  3. 3.
    S. A. Stroev and M. O. Samoilov, Endogenous Antioxidants and the Hypoxic Tolerance of the Brain [in Russian], I. P. Pavlov Institute of Physiology, St. Petersburg (2006).Google Scholar
  4. 4.
    N. J. Alkayed, T. Goyagi, H.-D. Joh, J. Klaus, D. R. Harder, R. J. Traystman, and P. D. Hurn, “Neuroprotection and P450 2C11 upregulation after experimental transient ischemic attack,” Stroke, 33, No. 6, 1677–1684 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    D. N. Atochin, J. Clark, I. T. Demchenko, M. A. Moskowitz, and P. L. Huant, “Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases,” Stroke, 34, No. 5, 1299–1303 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    F. C. Barone, R. F. White, P. A. Spera, J. Ellison, R. W. Currie, X. Wang, and G. Z. Feuerstein, “Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression,” Stroke, 29, No. 9, 1937–1950 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Belayev, O. F. Alonso, R. Busto, W. Zhao, and M. D. Ginsberg, “Middle cerebral artery occlusion in the rat by intraluminal suture: neurological and pathological evaluation of an improved model,” Stroke, 27, No. 9, 1616–1622 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Brozici, A. van der Zwan, and B. Hillen, “Anatomy and functionality of leptomeningeal anastomoses: a review,” Stroke, 34, No. 11, 2750–2672 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    R. C. Herz, B. Hillen, D. H. Versteeg, and D. J. De Wildt, “Collateral hemodynamics after middle cerebral artery occlusion in Wistar and Fischer-344 rats,” Brain Res., 793, No. 1–2, 289–296 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    L. C. Hoyte, M. Papadakis, P. A. Barber, and A. M. Buchan, “Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning,” Brain Res., 1121, No. 1, 231–237 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Kaplan, S. Brint, J. Tanabe, et al, “Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia,” Stroke, 22, 1032–1039 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Kitagawa, M. Matsumoto, M. Tagaya, R. Hata, H. Ueda, M. Niinobe, N. Handa, R. Fukunaga, K. Kimura, and K. Mikoshiba, “‘Ischemic tolerance’ phenomenon found in the brain,” Brain Res., 528, 21–24 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Koizumi, Y. Yoshida, T. Nakazawa, and G. Ooneda, “Experimental studies of ischemic brain edema. I. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area,” Jpn. J. Stroke, 8, 1–8 (1986).CrossRefGoogle Scholar
  14. 14.
    E. Z. Longa, P. R. Weinstein, S. Carlson, and R. Cummins, “Reversible muddle cerebral artery occlusion without craniectomy in rats,” Stroke, 20, No. 1, 84–91 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Matsushima and A. M. Hakim, “Transient forebrain ischemia protects against subsequent focal cerebral ischemia without changing cerebral perfusion,” Stroke, 26, No. 6, 1047–1052 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    J. S. Meyer and D. Denny-Brown, “The cerebral collateral circulation. I. Factors influencing collateral blood flow,” Neurology, 7, No. 7, 447–458 (1957).PubMedCrossRefGoogle Scholar
  17. 17.
    C. E. Murray, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, 74, No. 5, 1124–1136 (1986).CrossRefGoogle Scholar
  18. 18.
    H. Nakamura, T. Katsumata, Y. Nishiyama, T. Otori, K. Katsura, and Y. Katayama, “Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils,” Life Sci., 78, No. 15, 1713–1719 (2006).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Nakamura, K. Nakakimura, M. Matsumoto, and T. Sakabe, “Rapid tolerance to focal cerebral ischemia in rats is attenuated by adenosine A1 receptor antagonist,” J. Cereb. Blood Flow Metab., 22, No. 2, 161–170 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    N. E. Stagliano, M. Pérez-Pinzón, M. A. Moskowitz, and P. L. Huang, “Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice,” J. Cereb. Blood Flow Metab., 19, No. 7, 757–761 (1999).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Woitzik, N. Hecht, U. C. Schmeider, P. G. Peña-Tapia, and P. Vajkoczy, “Increased vessel diameter of leptomeningeal anastomoses after hypoxic preconditioning,” Brain Res., 1115, No. 1, 209–212 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    D. M. Yellon and J. M. Downey, “Preconditioning the myocardium: from cellular physiology to clinical cardiology,” Physiol. Rev., 83, No. 4, 1113–1151 (2003).PubMedGoogle Scholar
  23. 23.
    L. Zhao and T. S. Nowak, Jr., “CBF changes associated with focal ischemic preconditioning in the spontaneously hypertensive rat,” J. Cereb. Blood Flow Metab., 26, No. 9, 1128–1140 (2006).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • A. A. Shmonin
    • 1
    • 2
  • A. E. Baisa
    • 1
    • 2
  • E. V. Melnikova
    • 1
  • V. N. Vavilov
    • 1
    • 2
  • T. D. Vlasov
    • 1
    • 2
  1. 1.Academician I. P. Pavlov St. Petersburg State Medical UniversitySt. PetersburgRussia
  2. 2.V. A. Almazov Federal Center for the Heart, Blood, and EndocrinologySt. PetersburgRussia

Personalised recommendations