Neuroscience and Behavioral Physiology

, Volume 42, Issue 6, pp 628–633 | Cite as

Suppression of Self-Stimulation of the Lateral Hypothalamus by Opiates and Opioids Administered into the Central Nucleus of the Amygdala in Rats


Bipolar electrodes were implanted into the lateral hypothalamus of male Wistar rats for investigation of self-stimulation responses in a Skinner box and microcannulae were implanted into the central nucleus of the amygdala for administration of pharmacological agents. Blockade of corticoliberin receptors (astressin, 1 μg) or influx Na + currents (lidocaine, 1 μg) by intra-amygdalar administration led to 29–55 % decreases in lateral hypothalamus self-stimulation responses. Inhibition of D1 and D2 receptors in the amygdala by administration of SCH23390 (1 μm) and sulpiride (1 μg) resulted in lower levels of inhibition of the self-stimulation reaction. On the background of blockade of corticoliberin receptors (astressin), dopamine receptors (sulpiride), and the influx Na + currents of amygdalar neurons (lidocaine), phenamine (1 mg/kg) and sodium ethaminal (5 mg/kg) retained their psychoactivating effects on self-stimulation (+30–37 %), while fentanyl (0.1 mg/kg) and leu-enkephalin (0.1 mg/kg) lost this effect. Fentanyl produced moderate activation of self-stimulation only after blockade of D1 receptors with SCH23390. On the background of blockade of corticoliberin receptors, leu-enkephalin potentiated its depressant action on selfstimulation reactions (–89 %). Thus, suppression of the modulatory influences of the amygdala on the hypothalamus blocked the reinforcing properties of opiates (fentanyl) and opioids (leu-enkephalin) without affecting the psychoactivating influence of the psychostimulators phenamine and the barbiturate sodium ethaminal.


amygdala hypothalamus self-stimulation of the brain corticoliberin astressin sulpiride SCH23390 Phenamine Fentanyl sodium ethaminal leu-enkephalin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Lebedev and P. D. Shabanov, “Comparison of self-stimulation reactions and conditioned place preference on administration of phenamine to rats,” Zh. Vyssh. Nerv. Deyat., 42, No. 4, 692–698 (1992).Google Scholar
  2. 2.
    P. D. Shabanov, Psychopharmacology [in Russian], N.-L., St. Petersburg (2008).Google Scholar
  3. 3.
    P. D. Shabanov and A. A. Lebedev, “Structural-functional organization of the extended amygdala system and its role in reinforcement,” Obz. Klinich. Farmakol. Lekarstv. Terapii, 5, No. 1, 2–16 (2007).Google Scholar
  4. 4.
    P. D. Shabanov, A. A. Lebedev, A. V. Drobenkov, and A. B. Lyubimov, “Delayed behavioral and morphological consequences of activation of stress-antistress system in early ontogeny in rats,” Eksperim. Klinich. Farmakol., 72, No. 6, 7–14 (2009).Google Scholar
  5. 5.
    P. D. Shabanov, A. A. Lebedev, and Sh. K. Meshcherov, Dopamine and the Reinforcement System of the Brain [in Russian], Lan, St. Petersburg (2002).Google Scholar
  6. 6.
    P. D. Shabanov, A. A. Lebedev, and Sh. K. Meshcherov, “Consequences of intraamniotic administration of 6-hydroxydopamine to pregnant rats assessed from behavioral measures in adult offspring,” Psikhofarmakol. Biol. Narkologiya, 2, No. 1–2, 265–271 (2002).Google Scholar
  7. 7.
    P. D. Shabanov, A. A. Lebedeva, E. E. Voevodin, and V. F. Streltsov, “Blockade of corticoliberin receptors in the amygdala with astressin suppresses the reinforcing effects of phenamine, morphine, and leuenkephalin on brain self-stimulation,” Eksperim. Klinich. Farmakol., 69, No. 3, 14–18 (2006).Google Scholar
  8. 8.
    P. D. Shabanov, A. A. Lebedev, and V. F. Streltsov, Hormonal Mechanisms of Reinforcement [in Russian], N.-L., St. Petersburg (2008).Google Scholar
  9. 9.
    P. D. Shabanov, A. A. Lebedev, V. V. Rusanovskii, and V. F. Streltsov, “Behavioral effects of corticoliberin and its analogs given into the cerebral ventricles of rats,” Med. Akad. Zh., 5, No. 3, 59–67 (2005).Google Scholar
  10. 10.
    P. D. Shabanov, R. O. Roik, and V. F. Streltsov, “Do antidepressant activate the reinforcement system of the brain,” Narkologiya, 4, No. 6, 27–30 (2005).Google Scholar
  11. 11.
    P. D. Shabanov and N. S. Sapronov, Psychoneuroendocrinology [in Russian], Inform-Navigator, St. Petersburg (2010).Google Scholar
  12. 12.
    V. G. Shalyapina and P. D. Shabanov, Basic Neuroendocrinology [in Russian], Elbi-SpB, St. Petersburg (2005).Google Scholar
  13. 13.
    G. F. Alheid and L. Heimer, “Theories of basal forebrain organization and the ‘emotional moor system,’” Progr. Brain Res., 107, 461–484 (1996).CrossRefGoogle Scholar
  14. 14.
    A. W. Bruijnzeel and M. S. Gold, “The role of corticotropin-releasing factor-like peptides in cannabis, nicotine, and alcohol dependence,” Brain Res. Behav., 49, 505–528 (2005).Google Scholar
  15. 15.
    M. Davis, “The role of the amygdala in conditioned fear,” in: The Amygdala [in Russian], J. P. Aggleton (ed.), Wiley-Liss, New York (1992), pp. 255–306.Google Scholar
  16. 16.
    K. P. König and A. A. Klippel, A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem, Baltimore (1963).Google Scholar
  17. 17.
    E. A. Rybnikova, M. Opelto-Huikko,V. V. Rakitskaya, and V. G. Shalyapina, “Localization of corticoliberin receptors in the rat brain,” Neurosci. Behav. Physiol., 3, No. 1, 81–84 (2003).CrossRefGoogle Scholar
  18. 18.
    Z. Sarnyai, Y. Shaham, and S. C. Heinrichs, “The role of corticotropin-releasing factor in drug addiction,” Pharmacol. Rev., 53, 209–243 (2001).PubMedGoogle Scholar
  19. 19.
    P. D. Shabanov, “The extended amygdala CRF receptors regulate the reinforcing effect of self-stimulation,” Int. J. Addiction Res., 1, No. 1, 200–204 (2008).Google Scholar
  20. 20.
    P. D. Shabanov, A. A. Lebedev, and A. D. Nozdrachev, “Extrahypothalamic corticoliberin receptors regulate the reinforcing effects of self-stimulation,” Dokl. Biol. Sci., 406, 14–17 (2006).PubMedCrossRefGoogle Scholar
  21. 21.
    P. D. Shabanov, A. A. Lebedev, and A. D. Nozdrachev, “Social isolation syndrome in rats,” Dokl. Biol. Sci., 395, 99–102 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    L. W. Swanson and G. D. Petrowich, “What is the amygdala?” Trends Neurosci., 21, 323–331 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Velley, “The role of intrinsic neurons in lateral hypothalamic selfstimulation,” Behav. Brain Res., 22, No. 2, 141–152 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    M. A. Waraczynski, “The central extended amygdala networks as a proposed circuit underlying reward valuation,” Neurosci. Biobehav. Rev., 28, 1–25 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Department of PharmacologyS. M. Kirov Military Medical AcademySt. PetersburgRussia

Personalised recommendations