Neuroscience and Behavioral Physiology

, Volume 42, Issue 4, pp 380–391 | Cite as

Hypoxic Preconditioning – a Phenomenon Increasing the Tolerance of Cardiomyocytes to Hypoxia/Reoxygenation

  • L. N. Maslov
  • Yu. B. Lishmanov
  • F. Kolar
  • A. G. Portnichenko
  • Yu. K. Podoksenov
  • I. G. Khaliulin
  • H. Wang
  • J. M. Pei

Most studies addressing the question of hypoxic preconditioning (HP) are performed on isolated cardiomyocytes. There are relatively few reports on delayed HP in vivo and only occasional studies have addressed early preconditioning in vivo. HP has been found to restrict necrosis and apoptosis of cardiomyocytes and to improve the contractility of the isolated heart in ischemia (hypoxia) and reperfusion (reoxygenation). Evidence has been obtained indicating that adenosine is a trigger for HP in vitro. NO is a trigger for HP in in vitro and in vivo experiments. Reactive oxygen species were also found to be triggers for hypoxic preconditioning. ERK1/2 and p38 kinase have been shown to play important roles in delayed HP in vitro. Data showing that Akt kinase and PI3 kinase are also involved in hypoxic preconditioning in vitro have been obtained. KATP channels and KCa channels may be mediators and, perhaps, end effectors of late HP. Hypoxic preconditioning activates the following transcription factors: HIF-1α, HIF-3α, GATA-4, and NF-κB. The end effectors of HP may be the proteins HSP90, GRP78, 14-3-3, Bcl-2, Bcl-xL, BAD, and iNOS.


hypoxic preconditioning cardioprotection triggers kinases K + channel transcription factors end effector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Bilenko, Ischemic and Reperfusion Damage to Organs [in Russian], Meditsina, Moscow (1989).Google Scholar
  2. 2.
    A. G. Portnichenko, M. I. Vasilenko, and A. A. Moibenko, “The effects of acute hypoxic hypoxia on the induction of nitric oxide synthase in rats,” Fiziol. Zh., 49, No. 3, 47–49 (2003).Google Scholar
  3. 3.
    A. G. Portnichenko, M. I. Vasilenko,V. I. Portnichenko, and A. A. Moibenko, “Acute hypoxic hypoxia as an inducer of delayed cardioprotection in rats,” in: Hypoxia, Automated Analysis of Hypoxic States. Collected Studies [in Russian], A. Z. Kolchinskaya (ed.), Nalchik, Moscow (2005), Vol. 1, pp. 185–190.Google Scholar
  4. 4.
    A. G. Portnichenko, K. V. Rozova, M. I. Vasilenko, and O. O. Moibenko, “Age characteristics of ultrastructural changes in the myocardium in hypoxic preconditioning and ischemia-reperfusion of isolated rat hearts,” Fiziol. Zh., 53, No. 4, 27–34 (2007).Google Scholar
  5. 5.
    A. G. Portnichenko, M. I. Vasilenko, and O. O. Moibenko, “The role of potassium channels in the effector mechanisms of cardioprotection in late preconditioning of the rat heart,” Patologiya, 5, No. 3, 61–62 (2008).Google Scholar
  6. 6.
    A. G. Portnichenko, “The phenomenon of late preconditioning of the myocardium or phenotypic cardioprotection,” in: Endogenous Mechanisms of Cardioprotection as the Basis of the Pathogenetic Therapy of Heart Diseases [in Russian], A. A. Moibenko, V. E. Dosenko, and A. N. Parkhomenko (eds.), NVP Vidavnitstvo “Naukova Dumka,” Ukrainian National Academy of Sciences, Kiev (2008), pp. 305–331.Google Scholar
  7. 7.
    A. Aries, P. Paradis, C. Lefebvre, R. J. Schwartz, and M. Nemer, “Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity,” Proc. Natl. Acad. Sci. USA, 101, No. 18, 6975–6980 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    M. A. Arstall, Y. Z. Zhao, L. Hornberger, S. P. Kennedy, R. A. Buchholz, R. Osathamondh, and R. A. Kelly, “Human ventricular myocytes in vitro exhibit both early and delayed preconditioning responses to simulated ischemia,” J. Mol. Cell. Cardiol., 30, No. 5, 1019–1025 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Ban, A. J. Cooper, S. Samuel, A. Bhatti, M. Patel, S. Izumo, J. M. Penninger, P. H. Backx, G. Y. Oudit, and R. G. Tsushima, “Phosphatidyinositol 3-kinase gamma is a critical mediator of myocardial ischemic and adenosine-mediated preconditioning,” Circ. Res., 103, No. 6, 643–653 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Banerjee, X. L. Tank, Y. Qiu, H. Takano, S. Manchikalapudi, B. Dawn, G. Shirk, and R. Bolli, “Nitroglycerin induces late preconditioning against myocardial stunning via a PKC-dependent pathway,” Am. J. Physiol., 277, No. 6, Part 2, H2488–H2494 (1999).PubMedGoogle Scholar
  11. 11.
    P. C. Beguin, M. Joyeux-Faure, D. Godin-Ribuot, P. Lévy, and C. Ribuot, “Acute intermittent hypoxia improves rat myocardium tolerance to ischemia,” J. Appl. Physiol., 99, No. 3, 1064–1069 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    P. C. Beguin, E. Belaidi, D. Godin-Ribuot, P. Lévy, and C. Ribuot, “Intermittent hypoxia-induced delayed cardioprotection is mediated by PKC and triggered by p38 MAP kinase and Erk1/2,” J. Mol. Cell. Cardiol., 42, No. 2, 343–351 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    I. J. Benjamin and D. R. McMillan, “Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease,” Circ. Res., 83, No. 2, 117–132 (1998).PubMedGoogle Scholar
  14. 14.
    M. Bernaudin and F. R. Sharp, “Methods to detect hypoxia-induced ischemic tolerance in the brain,” Meth. Enzymol., 381, 399–416 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    W. M. Bernhardt, C. Warnecke, C. William, T. Tanaka, M. S. Wiesener, and K. U. Eckardt, “Organ protection by hypoxia and hypoxia-inducible factors,” Meth. Enzymol., 435, 221–245 (2007).PubMedGoogle Scholar
  16. 16.
    I. Bin-Jaliah, H. I. Ammar, D. P. Mikhailidis, M. A. Dallak, F. H. Al-Hashem, M. A. Haidara, H. Z. Yassin, A. A. Bahnasi, L. A. Rashed, and E. R. Isenovic, “Cardiac adaptive responses after hypoxia in an experimental model,” Angiology, 61, No. 2, 145–156 (2010).PubMedCrossRefGoogle Scholar
  17. 17.
    Z. Cai, D. J. Manalo, G. Wei, E. R. Rodriguez, K. Fox-Talbot, H. Lu, J. L. Zweier, and G. L. Semenza, “Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury,” Circulation, 108, No. 1, 79–85 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    Z. Cai, H. Zhong, M. Bosch-Marce, K. Fox-Talbot, L. Wang, C. Wei, M. A. Trush, and G. L. Semenza, “Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1α,” Cardiovasc. Res., 77, No. 3, 463–470 (2008).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Charron, G. Tsimiklis, M. Arcand, L. Robitaille, Q. Liang, J. D. Molkentin, S. Meloche, and M. Nemer, “Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA,” Genes Dev., 15, No. 20, 2702–2719 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    H. P. Chen, M. He,Y. L. Xu, Q. R. Huang, G. H. Huang, G. H. Zeng, D. Liu, and Z. P. Liao, “Anoxic preconditioning up-regulates 14-3-3 protein expression in neonatal rat cardiomyocytes through extracellular signal-regulated kinase 1/2,” Life Sci., 81, No. 5, 372–379 (2007).PubMedCrossRefGoogle Scholar
  21. 21.
    Y. Y. Chen and Q. Xia, “Evaluation of Gi/o protein signal transduction pathway in cardioprotection of hypoxic preconditioning,” Acta physiol. Sin., 52, No. 2, 93–97 (2000).Google Scholar
  22. 22.
    D. V. Cuong, N. Kim, J. B. Youm, H. Joo, M. Warda, J. W. Lee, W. S. Park, T. Kim, S. Kang, H. Kim, and J. Han, “Nitric oxidecGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K + channels in rat hearts,” Am. J. Physiol. Heart Circ. Physiol., 290, No. 5, H1808–H1817 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Dawn and R. Bolli, “Role of nitric oxide in myocardial preconditioning,” Ann. N.Y. Acad. Sci., 962, 18–41 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Eckjle, D. Köhler, R. Lehmann, K. El Kasmi, and H. K. Eltzschig, “Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning,” Circulation, 118, No. 2, 166–175 (2008).CrossRefGoogle Scholar
  25. 25.
    K. Z. Gong, Z. G. Zhang, A.H. Li, Y. F. Huang, P. Bu, F. Dong, and J. Liu, “ROS-mediated ERK activation in delayed protection from anoxic preconditioning in neonatal rat cardiomyocytes,” Chin. J. Med., 117, No. 3, 395–400 (2004).Google Scholar
  26. 26.
    Y. Honma, M. Tani, M. Takayama, K. Yamamura, and H. Hasegawa, “Aging abolishes the cardioprotective effect of combination heat shock and hypoxic preconditioning in reperfused rat hearts,” Basic Res. Cardiol., 67, No. 6, 489–495 (2002).CrossRefGoogle Scholar
  27. 27.
    Y. F. Huang, K. Z. Gong, and A. G. Zhang, “Different roles of ERK1/2 and p38 MAPKα/β in cellular signaling during cardiomyocyte anoxia preconditioning,” Acta Physiol. Sin., 55, No. 4, 454–458 (2003).Google Scholar
  28. 28.
    J. D. Jiao, V. Garg, B. Yang, and K. Hu, “Novel functional role of heat shock protein 90 in ATP-sensitive K + channel-mediated hypoxic preconditioning,” Cardiovasc. Res., 77, No. 1, 126–133 (2008).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Kalota, S. E. Shetzline, and A. M. Gewirtz, “Progress in the development of nucleic acid therapeutics for cancer,” Cancer Biol. Ther., 3, No. 1, 4–12 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    R. Kerkala, S. Pikkarainen, T. Majalahti-Palviainen, H. Tokola, and H. Ruskoako, “Distinct roles of mitogen-activated protein kinase pathways in GATA-4 transcription factor-mediated regulation of B-type natriuretic peptide gene,” J. Biol. Chem., 277, No. 16, 13752–13760 (2002).CrossRefGoogle Scholar
  31. 31.
    J. Khoury, J. C. Ibla, A. S. Neish, and S. P. Colgun, “Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation,” J. Clin. Invest., 117, No. 3, 703–711 (2007).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. Kim, A. G. Ma, K. Kitta, S. N. Fitch, T. Ideka,Y. Ihara, A. R. Simon, T. Evans, and Y. J. Suzuki, “Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis,” Mol. Pharmacol., 63, No. 2, 368–377 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    K. Kitta, S. A. Clément, J. Remeika, J. B. Blumberg, and Y. J. Suzuki, “Endothelin-1 induces phosphorylation of GATA-4 transcription factor in the HL-1 atrial-muscle cell line,” Biochem. J., 359, Part 2, 375–380 (2001).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Kitta, R. M. Day, Y. Kim, J. Torregroza, T. Evans, and Y. J. Suzuki, “Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells,” J. Biol. Chem., 278, No. 7, 4705–4712 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Kobayashi, T. Lackey,Y. Huang, E. Bisping,W. T. Pu, L. M. Boxer, and Q. Liang, “Transcription factor GATA4 regulates BCL2 gene expression in vitro and in vivo,” FASEB J., 20, No. 6, 800–802 (2006).PubMedGoogle Scholar
  36. 36.
    F. Kolar, J. Jezková, P. Balková, J. Breh, F. Neckár, F. Novák, O. Nováková, H. Tomásová, M. Srbová, B. Ost’ádal, J. Wilhelm, and J. Herget, “Role of oxidative stress in PKC-δ upregulation and cardioprotection induced by chronic intermittent hypoxia,” Am. J. Physiol. Heart Circ. Physiol., 292, No. 1, H224–H230 (2007).PubMedCrossRefGoogle Scholar
  37. 37.
    G. Kroemer, L. Galluzzi, and C. Brenner, “Mitochondrial membrane permeabilization in cell death,” Physiol. Rev., 87, No. 1, 99–163 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Kurreck, “Antisense technologies. Improvement through novel chemical modifications,” Eur. J. Biochem., 270, No. 8, 1628–1644 (2003).PubMedCrossRefGoogle Scholar
  39. 39.
    R. D. Lasley, G. M. Anderson, and R. M. Mentzer, “Ischaemic and hypoxic preconditioning enhance postischaemic recovery in the rat heart,” Cardiovasc. Res., 27, No. 4, 565–570 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    X. Liu, X. Wu, L. Cai, C. Tang, and J. Su, “Hypoxic preconditioning of cardiomyocytes and cardioprotection: phosphorylation of HIF-1α induced by p42/p44 mitogen-activated protein kinases is involved,” Pathophysiology, 9, No. 4, 201–205 (2003).PubMedCrossRefGoogle Scholar
  41. 41.
    L. D. Lukyanova, E. L. Germanova, and R. A. Kopaladze, “Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation,” Bull. Exp. Biol. Med., 147, No. 4, 400–404 (2009).PubMedCrossRefGoogle Scholar
  42. 42.
    S. C. Masters, R. R. Subramanian, A. Truong, H. Yang, K. Fujii, H. Zhang, and H. Fu, “Survival-promoting functions of 14-3-3 proteins,” Biochem. Soc. Trans., 30, No. 4, 360–365 (2002).PubMedCrossRefGoogle Scholar
  43. 43.
    N. Maulik, R. M. Engelman, J. A. Rousou, J. E. Flack, D. Deaton, and D. K. Das, “Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2,” Circulation, 100, No. 10, Supplement, II369–II375 (1999).PubMedGoogle Scholar
  44. 44.
    T. Morimoto, K. Hasegawa, T. Kakita, H. Wada, T. Yanazume, and S. Sasayama, “Phosphorylation of GATA-4 is involved in α1-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes,” J. Biol. Chem., 275, No. 18, 13721–13726 (2000).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Munro, and H. R. Pelham, “An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein,” Cell, 46, No. 2, 291–300 (1986).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Nojiri, K. Tanonaka, K. Yabe, K. Kawana, T. Iwai, M. Yamane, H. Yoshida, J. Hayashi, and S. Takeo, “Involvement of adenosine receptor, potassium channel and protein kinase C in hypoxic preconditioning of isolated cardiomyocytes of adult rat,” Jap. J. Pharmacol., 80, No. 1, 15–23 (1999).PubMedCrossRefGoogle Scholar
  47. 47.
    M. Ogbi and J. A. Johnson, “Protein kinase Cε interacts with cytochrome oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning,” Biochem. J., 393, Part 1, 191–199 (2006).PubMedCrossRefGoogle Scholar
  48. 48.
    B. Ostadal and F. Kolar, Cardiac Ischemia: from Injury to Protection, Kluwer Academic Publishers, Boston, Dordrecht, London (1999).Google Scholar
  49. 49.
    Y. X. Pan, L. Lin, A. J. Ren, H. Chen, C. S. Tang, and W. J. Yuan, “HSP70 and FRP78 induced by endothelin-1 pretreatment enhance tolerance to hypoxia in cultured neonatal rat cardiomyocytes,” J. Cardiovasc. Pharmacol., 44, Supplement 1, S117–S120 (2004).PubMedCrossRefGoogle Scholar
  50. 50.
    Y. X. Pan, A. J. Ren, J. Zheng, W. F. Rong, H. Chen, X. H. Yan, C. Wu, W. J. Yuan, and L. Lin, “Delayed cytoprotection induced by hypoxic preconditioning in cultured neonatal rat cardiomyocytes: role of GRP78,” Life Sci., 81, No. 13, 1042–1049 (2007).PubMedCrossRefGoogle Scholar
  51. 51.
    A. M. Park, H. Nagase, S. Vinod Kumar, and Y. J. Suzuki, “Acute intermittent hypoxia activates myocardial cell survival signaling,” Am. J. Physiol. Heart Circ. Physiol., 29, No. 2, H751–H757 (2007).Google Scholar
  52. 52.
    A. G. Portnychenko,V. E. Dosenko,V. I. Portnichenko, and O. O. Moybenko, “Expression of HIF-1α and HIF-3α differentially changed in rat heart ventricles after hypoxic preconditioning,” in : Proceedings of the XXVII European Section Meeting of the ISHR, Athens, Greece, May 28–31, 2008, Medimond Inter. Proc. (2008), pp. 61–64.Google Scholar
  53. 53.
    S. Rane, M. He, D. Sayed, H. Vashistha, A. Malhotra, J. Sadoshima, D. E. Vatner, S. F. Vatner, and M. Abdellatif, “Downregulation of miR-199a depresses hypoxia-inducible factor-1α and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes,” Circ. Res., 104, No. 7, 879–886 (2009).PubMedCrossRefGoogle Scholar
  54. 54.
    T. Ravingerova, J. E. Løkebø, J. Munch-Ellingsen, R. Sundset, P. Tande, and K. Ytrehus, “Mechanism of hypoxic preconditioning in guinea pig papillary muscles,” Mol. Cell. Biochem., 186, No. 1–2, 53–60 (1998).PubMedCrossRefGoogle Scholar
  55. 55.
    A. Rizvi, X. L. Tang, Y. Qiu, Y. T. Xuan, H. Takano, A. K. Jadoon, and R. Bolli, “Increased protein synthesis is necessary for the development of late preconditioning signal against myocardial stunning,” Am. J. Physiol., 277, No. 3, Part 2, H874–H884 (1999).PubMedGoogle Scholar
  56. 56.
    M. Rosenquist, “14-3-3 proteins in apoptosis,” Braz. J. Med. Biol. Res., 36, No. 4, 403–408 (2003).PubMedCrossRefGoogle Scholar
  57. 57.
    G. L. Semenza, “HIF-1: mediator of physiological and pathophysiological responses to hypoxia,” J. Appl. Physiol., 88, No. 4, 1474–1480 (2000).PubMedGoogle Scholar
  58. 58.
    G. L. Semenza, P. H. Roth, H. M. Fang, and G. L. Wang, “Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1,” J. Biol. Chem., 269, No. 38, 23757–23763 (1994).PubMedGoogle Scholar
  59. 59.
    K. Shinmura,Y. T. Xuan, X. L. Tang, E. Kodani, H. Han,Y. Zhu, and R. Boli, “Inducible nitric oxide synthase modulates cyclooxygenase-2 activity in the heart of conscious rabbits during the late phase of ischemic preconditioning,” Circ. Res., 90, No. 5, 602–608 (2002).PubMedCrossRefGoogle Scholar
  60. 60.
    K. Shintani-Ishida, M. Nakajima, K. Uemura, and K. Yoshida, “Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78,” Biochem. Biophys. Res. Commun., 345, No. 4, 1600–1605 (2006).PubMedCrossRefGoogle Scholar
  61. 61.
    Y. Shizukuda, R. T. Mallet, S. C. Lee, and H. F. Downey, “Hypoxic preconditioning of ischaemic canine myocardium,” Cardiovasc. Res., 26, No. 5, 534–542 (1992).PubMedCrossRefGoogle Scholar
  62. 62.
    Y. Shizukuda, T. Iwamoto, R. T. Mallet, and H. F. Downey, “Hypoxic preconditioning attenuates stunning caused by repeated coronary artery occlusions in dog heart,” Cardiovasc. Res., 27, No. 4, 559–564 (1993).PubMedCrossRefGoogle Scholar
  63. 63.
    D. Singh, A. Sharma, and M. Singh, “Effect of actinomycin D and cycloheximide on ischemic preconditioning-induced delayed cardioprotective effect in rats,” Indian J. Exp. Biol., 38, No. 10, 982–987 (2000).PubMedGoogle Scholar
  64. 64.
    A. Skyschally, P. van Caster, K. Boengler, P. Gres, J. Musiolik, D. Schilawa, R. Schulz, and G. Heusch, “Ischemic postconditioning in pigs: no causal role for RISK activation,” Circ. Res., 104, No. 1, 15–18 (2009).PubMedCrossRefGoogle Scholar
  65. 65.
    L. H. Snoeckx, R. N. Cornelussen, F. A. van Nieuwenhoven, R. S. Reneman, and G. J. Van der Vusse, “Heat shock proteins and cardiovascular pathophysiology,” Physiol. Rev., 81, No. 4, 1461–1497 (2001).PubMedGoogle Scholar
  66. 66.
    R. R. Subramanian, S. C. Masters, H. Zhang, and H. Fu, “Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis,” Exp. Cell Res., 271, No. 1, 142–151 (2001).PubMedCrossRefGoogle Scholar
  67. 67.
    H. Y. Sun, N. P. Wang, F. Kerendi, M. Halkos, H. Kin, R. A. Guyton, J. Vinten-Johansen, and Z. Q. Zhao, “Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation intracellular Ca2+ overload,” Am. J. Physiol. Heart Circ. Physiol., 288, No. 4, H1900–H1908 (2005).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Tani, Y. Suganuma, M. Takayama, H. Hasegawa, K. Shinmura, Y. Ebihara, and K. Tamaki, “Low concentrations of adenosine receptor blocker decrease protection by hypoxic preconditioning in ischemic rat hearts,” J. Mol. Cell. Cardiol., 30, No. 3, 617–626 (1998).PubMedCrossRefGoogle Scholar
  69. 69.
    M. Tani, Y. Honma, M. Takayama, H. Hasegawa, K. Shinmura, Y. Ebihara, and K. Tamaki, “Loss of protection by hypoxic preconditioning in aging Fischer 344 rat hearts related to myocardial glycogen content and Na + imbalance,” Cardiovasc. Res., 41, No. 3, 594–602 (1999).PubMedCrossRefGoogle Scholar
  70. 70.
    G. Testoni, S. Cerruti, P. Kade, M. Carregal, A. Varela, and E. A. Savino, “Effects of hypoxic preconditioning on the hypoxic-reoxygenated atria from fed and fasted rats,” J. Physiol. Biochem., 56, No. 4, 321–328 (2000).PubMedCrossRefGoogle Scholar
  71. 71.
    T. Uchiyama, R. M. Engelman, N. Maulik, and D. K. Das, “Role of Akt signaling in mitochondrial survival pathways triggered by hypoxic preconditioning,” Circulation, 109, No. 24, 3042–3049 (2004).PubMedCrossRefGoogle Scholar
  72. 72.
    T. L. Vanden Hoek, L. B. Becker, Z. Shao, C. Li, and P. T. Schumacker, “Reactive oxygen species released from mitochondria during brief hypoxia preconditioning in cardiomyocytes,” J. Biol. Chem., 273, No. 29, 18092–18098 (1998).PubMedCrossRefGoogle Scholar
  73. 73.
    T. L. Vanden Hoek, L. B. Becker, Z. H. Zhao, C. Q. Li, and P. T. Schumacker, “Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion,” Circ. Res., 86, No. 5, 541–548 (2000).PubMedGoogle Scholar
  74. 74.
    H. C. Wang, H. F. Zhang, W. Y. Guo, H. Su, K. R. Zhang, Q. X. Li, W. Yan, X. L. Ma, B. L. Lopez, T. A. Christopher, and F. Gao, “Hypoxic preconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation,” Apoptosis, 11, No. 8, 1453–1460 (2006).PubMedCrossRefGoogle Scholar
  75. 75.
    D. Wasserfuhr, S. M. Cetin, J. Yang, P. Freitag, S. Frede, H. Jakob, and P. Massoudy, “Protection of the right ventricle from ischemia and reperfusion by preceding hypoxia,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 378, No. 1, 27–32 (2008).CrossRefGoogle Scholar
  76. 76.
    R. A. White, L. L. Dowler, L. M. Pasztor, L. L. Gatson, L. R. Adkison, S. V. Angelonik, and D. B. Wilson, “Assignment of the transcription factor GATA4 gene to human chromosome 8 and mouse chromosome 145: Gata4 is a candidate gene for Ds (disorganization),” Genomics, 27, No. 1, 20–26 (1995).PubMedCrossRefGoogle Scholar
  77. 77.
    X. Wu, X. Liu, X. Zhu, and C. Tang, “Hypoxic preconditioning induces delayed cardioprotection through p38 MAPK-mediated calreticulin upregulation,” Shock, 27, No. 5, 572–577 (2007).PubMedCrossRefGoogle Scholar
  78. 78.
    L. Xi, D. Tekin, E. Gursoy, F. Salloum, J. E. Levasseur, and R. C. Kukreja, “Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia,” Am. J. Physiol. Heart Circ. Physiol., 283, No. 1, H5–H12 (2002).PubMedGoogle Scholar
  79. 79.
    F. F. Xu, X. H. Liu, and L. R. Cai, “Role of hypoxia-inducible factor-1α in the prevention of cardiomyocyte injury induced by hypoxic preconditioning,” Acta Physiol. Sin., 56, No. 5, 609–614 (2004).Google Scholar
  80. 80.
    X. M. Yang, Y. Liu, N. Tandon, J. Kambayashi, J. M. Downey, and M. V. Cohen, “Attenuation of infarction in cynomolgus monkeys: preconditioning and postconditioning,” Basic Res. Cardiol., 105, No. 1, 119–128 (2010).PubMedCrossRefGoogle Scholar
  81. 81.
    D. M. Yellon and J. M. Downey, “Preconditioning the myocardium: from cellular physiology to clinical cardiology,” Physiol. Rev., 83, No. 4, 1113–1151 (2003).PubMedGoogle Scholar
  82. 82.
    J. G. Zhuang, Y. Zhang, and Z. N. Zhou, “Hypoxic preconditioning upregulates KATP channels through activation of protein kinase C in rat ventricular myocytes,” Acta Pharmacol. Sin., 21, No. 9, 845–849 (2000).PubMedGoogle Scholar
  83. 83.
    X. M. Zhu, X. H. Liu, L. R. Cai, and F. F. Zu, “Hypoxic preconditioning induces endoplasmic reticulum stress-related cardioprotection mediated by p38 mitogen-activated protein kinase,” Acta Physiol. Sin., 58, No. 5, 463–470 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • L. N. Maslov
    • 1
  • Yu. B. Lishmanov
    • 1
  • F. Kolar
    • 2
  • A. G. Portnichenko
    • 3
  • Yu. K. Podoksenov
    • 1
  • I. G. Khaliulin
    • 4
  • H. Wang
    • 5
  • J. M. Pei
    • 6
  1. 1.Research Institute of Cardiology, Siberian BranchRussian Academy of Medical SciencesTomskRussia
  2. 2.Institute of PhysiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.A. A. Bogomolets Institute of PhysiologyUkrainian National Academy of SciencesKievUkraine
  4. 4.Bristol UniversityBristolUK
  5. 5.Liaoning Medical CollegeJinzhouChina
  6. 6.Fourth Military Medical UniversityXianChina

Personalised recommendations