Neuroscience and Behavioral Physiology

, Volume 42, Issue 3, pp 257–263 | Cite as

Selective Effects of Dehydroepiandrosterone Sulfate on Corticoliberin-Induced Anxiety

  • O. G. Semenova
  • V. V. Rakitskaya
  • E. A. Vershinina
  • N. E. Ordyan
  • V. G. Shalyapina

The effects of dehydroepiandrosterone sulfate (DHEA-S) on changes in the levels of anxiety induced by administration of the stress neurohormone corticoliberin were studied. A T maze was used to select Wistar rats with active and passive strategies of adaptive behavior. Testing of the active group in an elevated plus maze was used to select low- and high-anxiety individuals. Intranasal administration of corticoliberin to low-anxiety active rats resulted in decreases in total activity and increases in the level of anxiety, while high-anxiety animals had low sensitivity to this neurohormone. Prior administration of DHEA-S at a dose of 3 mg/100 g had antistress effects in low-anxiety rats and anxiolytic effects in high-anxiety rats. In passive animals, which were characterized by initially high levels of anxiety and were resistant to corticoliberin, administration of DHEA-S also had antistress actions. These results led to the conclusion that the effects of DHEA-S depended on the initial psychoemotional state and behavioral sensitivity to corticoliberin.


corticoliberin dehydroepiandrosterone sulfate anxiety rats behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. P. Goncharov, G. V. Katsiya, and A. N. Nizhnik, Dehydroepiandrosterone: Properties, Metabolism, and Biological Significance [in Russian], Adamant, Moscow (2004).Google Scholar
  2. 2.
    T. A. Obut, Androgens and the Adaptation of the Body: the Biological Significance of Adrenocortical Androgens [in Russian], Art-Avenue, Novosibirsk (2004).Google Scholar
  3. 3.
    T. A. Obut, T. V. Lipina, L. A. Koryakina, and N. N. Kudryavtseva, “Is dehydroepiandrosterone an anxiolytic agent?” Zh. Vyssh. Nerv. Deyat., 51, No. 4, 502–509 (2001).Google Scholar
  4. 4.
    O. G. Semenova, M. G. Semenova, V. V. Rakitskaya, and V. G. Shalyapina, “Psychomotor reactivity to corticoliberin in rats with active and passive strategies of adaptive behavior in a water immersion model of depression,” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 8, 1016–1021 (2006).Google Scholar
  5. 5.
    V. G. Shalyapina, “Corticoliberin in the regulation of adaptive behavior and the pathogenesis of post-stress psychopathology,” in: Basic Neuroendocrinology [in Russian], Elbi-SPb, St. Petersburg (2005), pp. 84–146.Google Scholar
  6. 6.
    V. G. Shalyapina, U. A. Vershinina,V. V. Rakitskaya, L. Yu. Ryzhova, M. G. Semenova, and O. G. Semenova, “Changes in the adaptive behavior of active and passive Wistar rats in an aqueous immersion model of depression,” Zh. Vyssh. Nerv. Deyat., 56, No. 4, 543–547 (2006).Google Scholar
  7. 7.
    V. G. Shalyapina, V. V. Rakitskaya, and E. A. Rybnikova, “Corticotropin-releasing hormone in the integration of endocrine functions and behavior,” Usp. Fiziol. Nauk., 34, No. 4, 75–92 (2003).Google Scholar
  8. 8.
    V. G. Shalyapina, V. V. Rakitskaya, M. G. Semenova, and O. G. Semenova, “The hormonal function of the hypophyseal-adrenocortical system in the pathogenetic heterogeneity of post-stress depression,” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 4, 480–487 (2006).Google Scholar
  9. 9.
    E. E. Baulieu and P. Robel, “Neurosteroids: a new brain function,” J. Steroid Biochem. Mol. Biol., 37, 395–405 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    N. A. Compagnone and S. H. Mellon, “Neurosteroids: Biosynthesis and function of these novel neuromodulators,” Front. Neuroendocrinol., 21, No. 1, 1–56 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Dunn and C. W. Berridge, “Physiological and behavioral response to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses,” Brain Res. Rev., 15, No. 2, 71–100 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    L. D. Griffin and S. H. Mellon, “Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes,” Proc. Natl. Acad. Sci. USA, 96, No. 23, 13512–13517 (1999).PubMedCrossRefGoogle Scholar
  13. 13.
    R. L. Hauger, V. Risbrough, R. H. Oakley, I. A. Olivares-Reyes, and F. M. Dautzenberg, “Role of CRF receptor signaling in stress vulnerability, anxiety, and depression,” Ann. N.Y. Acad. Sci., 1179, 120–143 (2009).PubMedCrossRefGoogle Scholar
  14. 14.
    J. F. Flood, G. E. Smith, and E. Roberts, “Dehydroepiandrosterone and its sulfate enhance memory retention in mice,” Brain Res., 447, No. 2, 269–278 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    P. D. Kroboth, F. S. Salek, A. L. Pittenger, T. J. Fabian, and R. F. Frye, “DHEA and DHEAS; a review,” J. Clin. Pharmacol., 39, No. 4, 327–348 (1990).CrossRefGoogle Scholar
  16. 16.
    R. Maayan, D. Touati-Werner, E. Ram, R. Strous, O. Keren, and A. Weizman, “The protective effect of frontal cortex dehydroepiandrosterone in anxiety and depressive models in mice,” Pharmacol. Biochem. Behav., 82, No. 2, 415–421 (2006).CrossRefGoogle Scholar
  17. 17.
    N. Maninger, O. M. Wolkowitz,V. I. Reus, E. P. Epel, and S. Mellon, “Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS),” Front. Neuroendocrinol., 30, No. 1, 65–91 (2009).PubMedCrossRefGoogle Scholar
  18. 18.
    M. D. Mayewska, S. Demirgören, C. E. Spivak, and E. D. London, “The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor,” Brain Res., 526, No. 1, 143–146 (1990).CrossRefGoogle Scholar
  19. 19.
    C. L. Melchior and R. F. Ritsmann, “Dehydroepiandrosterone is an anxiolytic in mice on the plus maze,” Pharmacol. Biochem. Behav., 47, No. 3, 437–441 (1994).PubMedCrossRefGoogle Scholar
  20. 20.
    S. H. Mellon, L. D. Griffin, and N. A. Compagnone, “Biosynthesis and action of neurosteroids,” Brain Res. Rev., 37, No. 1–3, 3–12 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Pellow, P. Chopin, S. E. File, and M. Briley, “Validation of open:closed arm entries in the elevated plus-maze as measure of anxiety in the rat,” J. Neurosci. Meth., 14, No. 3, 149–167 (1985).CrossRefGoogle Scholar
  22. 22.
    A. Prasad, M. Imamura, and C. Prasad, “Dehydroepiandrosterone decreases behavioral despair in high- but not low-anxiety rats,” Physiol. Behav., 62, No. 5, 1053–1057 (1997).PubMedCrossRefGoogle Scholar
  23. 23.
    R. J. Rodgers and N. J. Johnson, “Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety,” Pharmacol. Biochem. Behav., 52, No. 2, 297–303 (1995).PubMedCrossRefGoogle Scholar
  24. 24.
    R. Rupprecht, Neuroactive Steroids. Handbook of Stress and the Brain, T. Steckler, N. H. Kalin, and J. M. Reul (eds.) (2005),Vol. 15, pp. 545–560.Google Scholar
  25. 25.
    A. Urani, F. J. Roman, V. L. Phan, T. P. Su, and T. Maurice, “The antidepressant-like effect induced by sigma(1) receptor agonists and neuroactive steroids in mice submitted to the forced swimming test,” J. Pharmacol. Exp. Ther., 298, No. 3, 1269–1279 (2001).PubMedGoogle Scholar
  26. 26.
    F. Van Broekhoven and R. J. Verkes, “Neurosteroids in depression: a review,” Psychopharmacology, 165, No. 2, 97–110 (2003).PubMedGoogle Scholar
  27. 27.
    O. M. Wolkowitz, V. I. Reus, and E. Roberts, “Role of DHEA and DHEA-S in Alzheimer’s disease: replay,” Am. J. Psychiatry, 150, No. 9, 1433 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • O. G. Semenova
    • 1
  • V. V. Rakitskaya
    • 1
  • E. A. Vershinina
    • 1
  • N. E. Ordyan
    • 1
  • V. G. Shalyapina
    • 1
  1. 1.I. P. Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations