Neuroscience and Behavioral Physiology

, Volume 42, Issue 3, pp 244–252 | Cite as

Cortical Potentials Evoked in Humans by Signals to Perform Memory-Guided Saccades

  • M. V. Slavutskaya
  • V. V. Moiseeva
  • V. V. Shulgovskii

Increases in the latent periods of memory-guided saccades as compared with those of visually guided saccades were observed, providing evidence of slowing in saccade programming based on extraction of information from working memory. Comparison of the parameters and topography of the N1 and P1 components of evoked potentials induced by a signal to perform a memory-guided saccade and a visual stimulus-guided saccade suggested that the early stages of saccade programming, associated with the processing of spatial information, are mediated mainly by the descending mechanism of attention for memory-guided saccades and the ascending mechanism for saccades in response to a visual stimulus. These data may indicate that the increase in the latent period of memory-guided saccades is associated with lengthening of the central stage of saccade programming – the decision-taking stage, a correlate of which is the N2 wave developing in the middle of the latent period of the memory-guided saccade. The temporospatial dynamics of the N1, P1, and N2 components provide evidence that memory-guided saccade programming is controlled by the fronto-medio-thalamic system of selective attention, as well as by left-hemisphere motor attention mechanisms.


visually evoked saccades memory-guided saccades attention decision-taking evoked potentials EEG EEG mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Bragina and T. A. Dobrokhotova, Functional Asymmetry in Humans [in Russian], Meditsina, Moscow (1988).Google Scholar
  2. 2.
    V. V. Gnezditskii, Evoked Brain Potentials in Clinical Practice [in Russian], MED press-inform, Moscow (2003).Google Scholar
  3. 3.
    A. M. Ivanitskii, “Brain potentials in mental operations of different levels of complexity,” Fiziol. Cheloveka, 15, No. 3, 11–19 (1989).PubMedGoogle Scholar
  4. 4.
    R. Näätänen, Attention and Brain Function [in Russian], Moscow State University Press, Moscow (1998).Google Scholar
  5. 5.
    M. V. Slavutskaya, V. V. Moiseeva, N. A. Fonsova, and V. V. Shulgovskii, “Human cortical initiation potentials preceding memory-guided saccades,” Zh. Vyssh. Nerv. Deyat., 60, No. 1, 12–21 (2010).Google Scholar
  6. 6.
    N. F. Suvorov and O. P. Tairov, Psychophysiological Mechanisms of Directed Attention [in Russian], Nauka. Leningrad (1985).Google Scholar
  7. 7.
    R. A. Andersen and J. W. Gnadt, “Posterior parietal cortex,” in: The Neurobiology of Saccadic Eye Movements, R. Wurts and M. Golberg (eds.), Elsevier Sci. Publ. BV (Biomedical Division), Amsterdam (1989), pp. 315–335.Google Scholar
  8. 8.
    W. Becker, “Saccadic eye movements as a control system,” ibid., pp. 361–390.Google Scholar
  9. 9.
    H. Boecker, A. Dagher,A. O. Ceballos-Baumann, R. E. Passingham, M. Samuel, K. J. Friston, J. B. Poline, C. Dettmers, B. Conrad, and D. J. Brooks, “Role of the human rostral supplementary motor area and basal ganglia in motor sequence control: investigation with H2 15O PET,” J. Neurophysiol., 79, 1070–1080 (1998).PubMedGoogle Scholar
  10. 10.
    I. Evdokimidis, N. Smirnis, T. S. Constantinidis, and C. Papageorgiou, “Fronto-parietal activation differences observed before the execution of remembered saccades: an event-related potential study,” Cogn. Brain Res., 12, 89–99 (2001).CrossRefGoogle Scholar
  11. 11.
    R. Desimone and J. Duncan, “Neural mechanisms of selective visual attention,” Annu. Rev. Neurosci., 18, 193–222 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    T. C. Gunter, A. A. Wiers, J. L. Jakson, and G. Mulder, “Visual spatial attention to stimuli presented on the vertical and horizontal meridian,” Psychophysiology, 31, 140–153 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    J. C. Hauk and S. P. Wise, “Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action,” Cereb. Cortex, 5, No. 2, 95–110 (1995).CrossRefGoogle Scholar
  14. 14.
    O. Hikosaka,Y. Takikawa, and R. Kawagoe, “Role of the basal ganglia in the control purposive saccade eye movement,” Physiol. Rev., 80, 953–978 (2000).PubMedGoogle Scholar
  15. 15.
    M. Ibo and T. Sawaguchi, “Neuronal activity representing visual spatial mnemonic processes associated with target selection in the monkey dorsolateral prefrontal cortex,” Neurosci. Res., 43, 9–22 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Kinsbourne, “The cerebral basis of lateral asymmetrical in attention,” Acta Psychol., 33, 193–201 (1970).CrossRefGoogle Scholar
  17. 17.
    B. S. Krishna, S. C. Stenrod, J. W. Bisley, J. B. Sirotin, and M. E. Goldberg, “Reaction time of manual responses to a visual stimulus at the goal of a planned memory-guided saccade in the monkey,” Exp. Brain Res., 173, 102–114 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annu. Rev. Neurosci., 24, 167–202 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    D. P. Munos and S. Everling, “Look away: the antisaccade task and the voluntary control of eye movement,” Nat. Rev. Neurosci., 5, 218–231 (2004).CrossRefGoogle Scholar
  20. 20.
    C. Pierrot-Deseiligny, C. Milea, and R. M. Müri, “Eye movement control by cerebral cortex,” Curr. Opin. Neurol., 17, No. 1, 17–25 (2004).CrossRefGoogle Scholar
  21. 21.
    K. H. Pribram and D. McGuinnes, “Arousal, activation, and effort in the control of attention,” Psychol. Rev., 82, 116–149 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    P. Rämä, S. Carlsön, J. Kekoni, and H. Hämäläinen, “A spatial oculomotor memory-task performance produces a task-related slow shift in human encephalography,” EEG Clin. Neurophysiol., 94, 371–380 (1995).CrossRefGoogle Scholar
  23. 23.
    J. Row, K. Friston, R. Frackowiak, and R. Passingmam, “Attention to action: Specific modulation of corticocortical interaction in humans,” Neuroimage, 17, 988–998 (2002).CrossRefGoogle Scholar
  24. 24.
    M. F. S. Rushworth, P. D. Nixon, S. Renowden, D. T. Wade, and R. E. Passingham, “The left parietal cortex and motor attention,” Neuropsychologia, 35, 1261–1273 (1997).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Schlag-Rey and J. Schlag, “The central thalamus,” in: The Neurobiology of Saccadic Eye Movements, R. H. Wurts and M. E. Goldberg (eds.), Elsevier Sci. Publ. BV (Biomedical Division), Amsterdam (1989), pp. 361–390.Google Scholar
  26. 26.
    H. Shibasaki, G. Barret, E. Halliday, and A. Halliday, “Components of the movement-related cortical potential and their scalp topography,” EEG Clin. Neurophysiol., 4, 213–226 (1980).CrossRefGoogle Scholar
  27. 27.
    D. Soto, D. Heinke, G. W. Humphreys, and M. J. Blanco, “Early, topdown guidance of attention from working memory,” J. Exp. Psychol. Hum. Percept. Perform., 31, No. 2, 248–261 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    T. R. Stanford and D. L. Sparks, “Systematic errors for saccades to remembered target: evidence for a dissociation between saccades metrics and activity in the superior colliculus,” Vision Res., 34, 93–106 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • M. V. Slavutskaya
    • 1
  • V. V. Moiseeva
    • 1
  • V. V. Shulgovskii
    • 1
  1. 1.Department of Higher Nervous ActivityM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations