Activation of the Tectofugal Visual System in Pied Flycatcher Nestlings at the Early Stages of Development of Feeding Behavior Guided by Diffuse Photosensitivity

  • E. V. Korneeva
  • A. A. Tiunova
  • L. I. Aleksandrov
  • T. B. Golubeva
  • K. V. Anokhin

Immunohistochemical detection of c-Fos protein on serial frontal sections of pied flycatcher nestling brains was used to map visual structures involved in the sensory support of the early forms of feeding behavior. Quantitative analysis of c-Fos protein content was performed in the higher representations of the thalamofugal (Wulst) and tectofugal (entopallium) visual projections in visually directed feeding behavior in six-day-old nestlings with diffuse photosensitivity. Feeding behavior-evoked induction of c-Fos was not seen in the Wulst area, which is involved in feeding integration in adult bifoveal birds. Induction of c-Fos was seen in the ventral area of the entopallium, whose neurons are known from published data to be sensitive to changes in illumination. The entopallium of six-day-old nestlings showed asymmetry in evoked c-Fos expression, probably reflecting developmental asymmetry typical of the embryonic period in birds.


ontogeny feeding behavior birds Wulst entopallium thalamofugal system tectofugal system c-Fos 


  1. 1.
    P. K. Anokhin, Handbook in the Physiology of Functional Systems [in Russian], Meditsina, Moscow (1975).Google Scholar
  2. 2.
    N. N. Kartashev, “Some characteristics of eye structure in birds. Communication I,” Ornitologiya, No. 11, 40–53 (1974).Google Scholar
  3. 3.
    E. V. Korneeva, N. G. Gladkovich, A. D. Vorobiova, and K. V. Shuleikina, “Neuronogenesis of the hyperstriatum and changes in types of visual adaptive behavior in birds. A morphometric study,” Zh. Evol. Biokhim. Fiziol., 30, No. 3, 420–428 (1994).Google Scholar
  4. 4.
    S. N. Khayutin and L. P. Dmitrieva, Organization of Early Species-Specific Behavior [in Russian], Nauka, Moscow (1991).Google Scholar
  5. 5.
    T. V. Khokhlova, L. V. Zueva, and T. B. Golubeva, “Stages of development of the retinal photoreceptors during the postnatal ontogeny of the pied flycatcher (Ficedula hypoleuca),” Zh. Evol. Biokhim. Fiziol., 36, No. 4, 356–363 (2000).Google Scholar
  6. 6.
    I. A. Shevelev, Neurons of the Visual Cortex. Adaptability and Dynamics of Receptive Fields [in Russian], Nauka, Moscow (1984).Google Scholar
  7. 7.
    P. Bagnoli and A. Burkhalter, “Organization of the afferent projections to the Wulst in the pigeon,” J. Comp. Neurol., 214, 103–113 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Bravo and J. D. Pettigrew, “The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia,” J. Comp. Neurol., 199, 419–441 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    T. D. Charlier, G. F. Ball, and J. Balthazart, “Sexual behavior activates the expression of the immediate early genes c-Fos and Zenk (egr-1) in catecholaminergic neurons of male Japanese quail,” Neurosci., 131, 13–30 (2005).CrossRefGoogle Scholar
  10. 10.
    E. D’Hondt, J. Vermeiren, K. Peeters, J. Balthazart, O. Tlemcani, G. F. Ball, D. L. Duffy, F. Vandesande, and L. R. Berghman, “Validation of a new antiserum directed towards the synthetic c-terminus of the FOS protein in avian species: immunological, physiological and behavioral evidence,” J. Neurosci. Meth., 91, 31–45 (1999).CrossRefGoogle Scholar
  11. 11.
    J. Engelage and H. J. Bischof, “Single cell responses in the ectostriatum of the zebra finch,” J. Comp. Physiol. A., 179, 785–795 (1996).CrossRefGoogle Scholar
  12. 12.
    O. Gunturkun, “Morphological asymmetries of the tectum opticum in the pigeon,” Exp. Brain Res., 116, No. 3, 561–566 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    O. Inzunza, H. Bravo, R. L. Smith, and M. Angel, “Topography and morphology of retinal ganglion cells in Falconiforms: a study on predatory and carrion-eating birds,” Anat. Rec., 229, No. 2, 271–277 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    A. N. Iwaniuk, C. P. Heesy, M. I. Hall, and D. R. W. Wylie, “Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds,” J. Comp. Physiol. A., 194, 267–282 (2008).CrossRefGoogle Scholar
  15. 15.
    H. J. Karten and W. Hodos, “Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia),” J. Comp. Neurol., 140, 35–52 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    H. J. Karten,W. Hodos,W. J. Nauta, and A. M. Revzin, Neural connections of the ‘visual Wulst’ of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia),” J. Comp. Neurol., 150, 253–278 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    A. V. Laverghetta and T. Shimizu, Organization of the ectostriatum based on afferent connections in the zebra finch (Taeniopygia guttata),” Brain Res., 963, 101–112 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    G. R. Martin and G. Katzir, “Visual fields in short-toed eagles, Circaetus gallicus (Accipitridae), and the function of binocularity in birds,” Brain Behav. Evol., 53, 55–66 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Mey and S. Thanos, “Development of the visual system of the chick. I. Cell differentiation and histogenesis,” Brain Res. Brain Res. Rev., 32, No. 2–3, 343–379 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    A. P. Nguyen, M. L. Spetch, N. A. Crosder, I. R. Winship, P. L. Hurd, and D. R. Wylie, “A dissociation of motion and spatial-pattern vision in the avian telencephalon: implications for the evolution of ‘visual streams’,” J. Neurosci., 24, 4962–4970 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    J. T. Pettigrew, Comparison of the Retinotopic Organization of the Visual Wulst in Nocturnal and Diurnal Raptors, with a Note on the Evolution of Frontal Vision, S. J. Smith and E. L. Smith (eds.), Springer-Verlag, Berlin (1979), pp. 86–95.Google Scholar
  22. 22.
    J. D. Pettigrew and M. Konishi, “Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba),” Science, 193, 675–678 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Reiner, K. Yamamoto, and H. J. Karten, “Organization and evolution of the avian forebrain,” Anat. Rec. A., 287, 1080–1102 (2005).Google Scholar
  24. 24.
    M. Remy and O. Gunturkun, “Retinal afferents to the tectum opticum and the nucleus opticus principalis thalami in the pigeon,” J. Comp. Neurol., 305, 57–70 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    L. J. Rogers, “Development and function of lateralization in the avian brain,” Brain Res. Bull., 76, 235–244 (2008).PubMedCrossRefGoogle Scholar
  26. 26.
    L. J. Rogers and G. A. Bell, “Different rates of functional development in the two visual systems of the chicken revealed by [14 C]2-deoxyglucose,” Brain Res. Dev. Brain Res., 49, No. 2, 161–172 (1989).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Sadananda and H.-J. Bischof, “c-Fos induction in forebrain areas of two different visual pathways during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata),” Behav. Brain Res., 173, 262–267 (2006).PubMedCrossRefGoogle Scholar
  28. 28.
    D. Von Agoston, C. G. Palkovits, S. F. Fitzgerald, and D. E. Brenneman, “Developmental changes in the inducibility of fos-like immunoreactivity in primary embryonic spinal cord cultures,” Brain Res. Dev. Brain Res., 89, No. 2, 173–186 (1995).CrossRefGoogle Scholar
  29. 29.
    Y. C. Wang, S. Jiang, and B. Frost, “Visual processing in pigeon nucleus rotundus: luminance, color, motion and looming subdivisions,” Vis. Neurosci., 10, 21–30 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    Q. Xiao, D.-P. Li, and S.-R. Wang, “Looming-sensitive responses and receptive field organization of telencephalic neurons in the pigeon,” Brain Res. Bull., 68, 322–328 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • E. V. Korneeva
    • 1
    • 2
  • A. A. Tiunova
    • 2
  • L. I. Aleksandrov
    • 1
  • T. B. Golubeva
    • 1
    • 3
  • K. V. Anokhin
    • 2
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.P. K. Anokhin Research Institute of Normal PhysiologyRussian Academy of Medical SciencesMoscowRussia
  3. 3.Department of ZoologyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations