Advertisement

Neuroscience and Behavioral Physiology

, Volume 41, Issue 5, pp 532–535 | Cite as

Molecular Genetic Studies of Early-Onset Schizophrenia

  • S. A. Pakhomova
  • G. I. Korovaitseva
  • M. Yu. Monchakovskaya
  • V. B. Vilyanov
  • L. P. Frolova
  • S. V. Kasparov
  • E. V. Kolesnichenko
  • V. E. Golimbet
Article

Early-onset schizophrenia is characterized by a more severe course and unfavorable outcome. We report here our studies of a number of genes which may be involved in the pathogenesis of this type of schizophrenia: the genes for brain-derived neurotrophic factor (the Val66Met polymorphism), the serotonin transporter (5-HTTLPR), the type 2A serotonin receptor (T102C), and the D2 dopamine receptor (Taq1A). The study group consisted of 65 patients (age at onset was less than 15 years). The control group consisted of 111 healthy subjects aged 6–26 years (mean age 18.9 ± 6.7 years). Among the genes studied, the only one found to be associated with the disease was the Val66Met polymorphism. The frequency of the ValVal genotype was higher in the group of patients with schizophrenia (p = 0.03; odds ratio 2.1, confidence interval 1.1–4.0). These results support our previous observation of a relationship between this genotype and the continuous form of schizophrenia identified in studies of an independent group of patients without evaluation of age at onset, and lead to the conclusion that the ValVal genotype can be regarded as a marker for the more severe form of schizophrenia.

Key words

schizophrenia early onset genes brain-derived neurotrophic factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Golimbet, N. G. Mityushina, T. V. Shcherbatykh, et al., “Molecular genetic polymorphism of a number of candidate genes for mental diseases in patients with schizophrenia with early onset of manifestations,” Zh. Nevrol. Psikhiat., 101, No. 4, 48–50 (2001).Google Scholar
  2. 2.
    V. E. Golimbet, M. G. Aksenova, V. V. Nosikov, et al., “Linkage analysis of the Taq1A and Taq1B loci with schizophrenia in patients and their siblings,” Zh. Nevrol. Psikhiat., 102, No. 4, 43–44 (2002).Google Scholar
  3. 3.
    V. E. Golimbet, G. I. Korovaitseva, L. I. Abramova, et al., “Relationship between the polymorphic marker VAL66MET of the brain-derived neurotrophic factor gene and schizophrenia in the Russian population,” Mol. Biol., 42, No. 4, 599–603 (2008).CrossRefGoogle Scholar
  4. 4.
    T. V. Shcherbatykh, V. E. Golimbet, V. A. Orlova, et al., “Polymorphism in the human serotonin transporter gene in endogenous psychoses,” Genetika, 36, No. 12, 1712–1715 (2000).PubMedGoogle Scholar
  5. 5.
    H. M. Abdolmaleky, S. V. Faraone, S. J. Glatt, et al., “Meta-analysis of association between the T102C polymorphism of the 5HT2a receptor gene and schizophrenia,” Schizophr. Res., 67, No. 1, 53–62 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    A. M. Addington, M. Gornick, A. L. Sporn, et al., “Polymorphisms in the 13q33 schizophrenia and psychosis not otherwise specified,” Biol. Psychiat., 55, No. 10, 976–980 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    H. M. Chao, H. T. Kao, and B. Porton, “BDNF Val66Met variant and age of onset in schizophrenia,” Am. J. Genet. B. Neuropsychiat. Genet., 147B, No. 4, 505–506 (2008).CrossRefGoogle Scholar
  8. 8.
    C. Dubertret, L. Gouya, N. Hanoun, et al., “The 3’ region of the DRD2 gene is involved in genetic susceptibility to schizophrenia,” Schizophr. Res., 67, No. 1, 75–85 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    T. E. Goldberg, R. Kotov, A. T. Lee, et al., “The serotonin transporter gene and disease modification in psychosis: evidence for systematic differences in allelic directionality at the 5-HTTLPR locus,” Schizophr. Res., 111, No. 1–3, 103–108 (2009).PubMedCrossRefGoogle Scholar
  10. 10.
    V. E. Golimbet, O. M. Lavrushina, V. G. Kaleda, et al., “Supportive evidence for the association between the T102C 5-HTR2A gene polymorphism and schizophrenia: a large-scale case-control and family-based study,” Eur. Psychiat., 22, No. 3, 167–170 (2007).CrossRefGoogle Scholar
  11. 11.
    M. C. Gornick, A. M. Addington, A. Sporn, et al., “Dysbindin (DTNBP1,6p22.3) is associated with childhood-onset psychosis and endophenotypes measured by the Premorbid Adjustment Scale (PAS),” J. Autism Dev. Disord., 35, No. 6, 831–838 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Gourion, C. Goldberger, S. Leroy, et al., “Age at onset of schizophrenia: interaction between brain-derived neurotrophic factor and dopamine D3 receptor gene variants,” Neuroreport, 16., No. 12, 1407–1410 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    I. Hernandez and B. P. Sokolov, “Abnormalities in 5-HT2A receptor mRNA expression in frontal cortex of chronic elderly schizophrenics with varying histories of neuroleptic treatment,” J. Neurosci. Res., 59, No. 2, 218–225 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Iwata, H. Matsumoto, Y. Minabe, et al., “Early-onset schizophrenia and dopamine-related gene polymorphism,” Am. J. Med. Genet. B. Neuropsychiatr. Genet., 116B, No. 1, 23–26 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    K. P. Lesch, D. Bengal, A. Heils, et al., “Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region,” Science, 274, 1527–1531 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Maziade, M. Martinez, C. Rodriguez, et al., “Childhood/early adolescence-onset and adult-onset schizophrenia. Heterogeneity at the dopamine D3 receptor gene,” Brit. J. Psychiat., 170, 27–30 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Naoe, T. Shinkai, H. Hori, et al., “No association between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and schizophrenia in Asian populations: Evidence from a case-control study and meta-analysis,” Neurosci. Lett., 415, No. 2, 108–112 (2007).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Nicolson, M. Lenane, S. D. Hamburger, et al., “Lessons from childhood-onset schizophrenia,” Brain Res. Brain Res. Rev., 31, No. 2–3, 147–156 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Numata, S. Ueno, J. Iga, et al., “Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in schizophrenia is associated with age at onset and symptoms,” Neurosci. Lett., 401, No. 1–2, 1–5 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Sekizawa, Y. Iwata, K. Nakamura, et al., “Childhood-onset schizophrenia and tryptophan hydroxylase gene polymorphism,” Am. J. Med. Genet. B. Neuropsychiatr. Genet., 136B, No. 1, 106 (2005).CrossRefGoogle Scholar
  21. 21.
    C. S. Weickert, T. M. Hyde, B. I. Lipska, et al., “Reduced brainderived neurotrophic factor in prefrontal cortex of patients with schizophrenia,” Mol. Psychiat., 8, No. 6, 592–610 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • S. A. Pakhomova
    • 2
  • G. I. Korovaitseva
    • 1
  • M. Yu. Monchakovskaya
    • 3
  • V. B. Vilyanov
    • 2
  • L. P. Frolova
    • 3
  • S. V. Kasparov
    • 1
  • E. V. Kolesnichenko
    • 2
  • V. E. Golimbet
    • 1
  1. 1.Scientific Center for Mental HealthRussian Academy of Medical SciencesMoscowRussia
  2. 2.Saratov State Medical UniversityMoscowRussia
  3. 3.A. N. Alekseev Moscow City Clinical Psychiatric Hospital No. 1.MoscowRussia

Personalised recommendations