Skip to main content

Advertisement

Log in

Regulation of the Physiological Functions of Human Dendritic Cells by Recombinant Heat Shock Protein Hsp70

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Dendritic cells (DC) are the most important antigen-presenting cells in the body. They are the target of action of various vaccines and dendritic cells have been used as the basis for developing cellular antitumor and antiviral vaccines, i.e., DC vaccines. At the same time, dendritic cells may provide a suitable model for studies of the activity and mechanisms of action of different immunotherapeutic formulations. One aspect of the optimization of the use of dendritic cells for inducing antigen-specific immune responses relates to the use of heat shock proteins (Hsp), particularly Hsp70. This protein can be used to introduce protein antigens into dendritic cells and to control the activity of dendritic cells. Important aspects of achieving these aims include knowledge of dendritic cell physiology and the characteristics of the interaction of Hsp70 and its complexes with antigens with dendritic cells of different levels of differentiation. Human recombinant Hsp70 was found not only to deliver antigens to dendritic cells, but also to regulate the activity of mature dendritic cells and to optimize the induction of antigen-specific cellular immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. I. Danilevskii, E. Yu. Moskaleva, N. V. Gorokhovets, O. N. Popova, D. L. Belyaev, and S. E. Severin, “Effects of recombinant human heat shock protein Hsp70 on the activity of dendritic cells at different stages of maturation,” Mol. Meditsina, 4, 52–57 (2009).

    Google Scholar 

  2. L. V. Savvateeva, N. V. Gorokhovets, A. V. Chernikov, M. I. Danilevskii, and S. E. Severin, “Preparation of recombinant human HSP70A1B,” Vopr. Biol. Med. Farm. Khimii, 3, 10–14 (2007).

    Google Scholar 

  3. S. E. Severin and E. Yu. Moskaleva, “New methods for cellular antitumor therapy,” Vestn. NII Molek. Med., 7, 51–76 (2007).

    Google Scholar 

  4. K. V. Anderson, L. Bokla, C. Nüsslein-Volhard, “Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product,” Cell, 42, No. 3, 791–798 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. A. Asea, “Mechanisms of HSP72 release,” J. Biosci., 32, No. 3, 579–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. A. Asea, S. K. Kraeft, E. A. Kurt-Jones, M. A. Stevenson, L. B. Chen, R. W. Finberg, G. C. Koo, and S. K. Calderwood, “Hsp70 stimulates cytokine production through a CD-14-dependent pathway, demonstrating its dual role as a chaperone and cytokine,” Nat. Med., 6, 435–442 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, 392, 242–252 (1998).

    Article  Google Scholar 

  8. J. Banchereau, F. Bazan, D. Blanchard, F. Briere, J. P. Galizzi, C. van Kooten, Y. J. Liu, R. Fousset, and S. Saeland, “The CD40 antigen and its ligand,” Ann. Rev. Immunol., 12, 881–922 (1994).

    Article  CAS  Google Scholar 

  9. S. Basu, R. J. Binder, T. Ramalingam, and P. K. Srivastava, “CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin,” Immunity, 14, 303–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. T. Becker, F. U. Hartl, and F. Wieland, “CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes,” J. Cell Biol., 158, 1277–1285 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. S. R. M. Bennett, F. R. Carbone, F. Karamalis, R. A. Flavell, J. F. A. P. Miller, and W. R. Heath, “Help for cytotoxic-T-cell responses is mediated by CD40 signalling,” Nature, 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. R. J. Binder, D. K. Han, and P. K. Srivastava, “CD91: a receptor for heat-shock protein gp96,” Nat. Immunol., 1, 151–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. F. Briere, N. Bendriss-Vermare, Th. Delale, S. Burg, C. Corbet, M. C. Rissoan, L. Chaperot, J. Plumas, M. C. Jacob, G. Trinchieri, and E. E. Bates, “Origin and filiation of human plasmacytoid dendritic cells,” Human Immunol., 63, 1081–1093 (2002).

    Article  CAS  Google Scholar 

  14. J. E. Buhlmann, T. M. Foy, A. Aruffo, K. M. Crassi, J. A. Ledbetter, W. R. Green, J. C. Xu, L. D. Shultz, D. Roopesian, R. A. Flavell, L. Fast, R. J. Noelle, and F. H. Durie, “In the absence of a CD40 signal, B cells are tolerogenic,” Immunity, 2, 645–653 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. A. J. Caplan, D. M. Cyr, and M. G. Douglas, “Eukaryotic homologues of Escherichia coli Dnak: a diverse protein family that functions with hsp70 stress proteins,” Mol. Biol. Cell., 4, 555–563 (1993).

    CAS  PubMed  Google Scholar 

  16. Ch. Caux, S. Lebecque, Y.-J. Liu, and J. Banchereau, “Developmental pathways of human myeloid dendritic cells,” in: Dendritic Cells, T. M. Lotze and A. W. Thomson, (eds.), Academic Press (1999), pp. 62–92.

  17. J. M. Cavaillon and N. Haeffner-Cavaillon, Polymyxin B inhibition of LPS-induced interleukin-1 secretion by human monocytes is dependent upon the LPS origin,” Mol. Immunol., 23, 965 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. A. Cegielska and C. Georgopoulos, “Functional domains of the Escherichia coli dnaK heat shock protein as revealed by mutational analysis,” J. Biol. Chem., 264, No. 35, 21122–21130 (1998).

    Google Scholar 

  19. M. Cella, A. Engring, V. Pinet, J. Pieters, and A. Lanzavecchia, “Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells,” Nature, 388, No. 6644, 782–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. M. Cella, F. Sallusto, and A. Lanzavecchia, “Origin, maturation and antigen presenting function of dendritic cells,” Curr. Opin. Immunol., 9, 10–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. M. Cella, D. Scheidegger, P. Palmer-Lehmann Lahne, A. Lanzavecchia, and G. Alber, “Ligation of CD40 on dendritic cells triggers production of high levels of IL-12 and enhances T cell stimulatory capacity: T-T help via APC activation,” J. Exp. Med., 184, 747–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. M. Chen, T. Masaki, and T. Sawamura, “LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis,” Pharmacol. Ther., 95, No. 1, 89–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. W. Chen, U. Syldath, K. Bellmann, V. Burkart, and H. Kolb, “Human 60-kDa heat-shock protein: a danger signal to the innate immune system,” J. Immunol., 162, 3212–3219 (1999).

    CAS  PubMed  Google Scholar 

  24. L. Comainacini, A. F. Pasini, U. Garbin, A. Davoli, M. L. Tosetti, M. Campagnola, A. Rigoni, A. M. Pastorino, V. Lo Cascio, and T. Sawamura, “Oxidized low density lipoprotein (ox-EDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species,” J. Biol. Chem., 275, No. 17, 12633–12638 (2000).

    Article  Google Scholar 

  25. M. S. Cooperstock, “Inactivation of endotoxin by polymyxin B,” Antimicrob. Agents Chemother., 6, 422–425 (1974).

    CAS  PubMed  Google Scholar 

  26. S. K. Datta and S. L. Kalled, “CD40-CD40 ligand interaction in autoimmune disease,” Arthritis Rheum., 40, 1735–1745 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, J. Aubry, K. Nakamura, N. Kawakami-Honda, L. Goetsch, T. Sawamura, J. Bonnefoy, and P. Jeannin, “Involvement of Lox-1 in dendritic cell-mediated antigen cross-presentation,” Immunity, 17, 353–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. B. Dybdahl, A. Wahba, E. Lien, T. H. Flo, A. Waage, N. Qureshi, O. F. M. Sellevold, T. Espevik, and A. Sundan, “Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through Toll-like receptor-4,” Circulation, 105, 685–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. A. L. Fink, “Chaperone-mediated protein folding,” Physiol. Rev., 79, 425–449 (1999).

    CAS  PubMed  Google Scholar 

  30. K. M. Flaherty, C. DeLuca-Flaherty, and D. B. McKay, “Threedimensional structure of the ATPase fragment of a 70K heat-shock cognate protein,” Nature, 346, 623–628 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. L. Flores-Ramo, “In vivo maturation and migration of dendritic cells,” Immunology, 102, 255–262 (2001).

    Article  Google Scholar 

  32. M. Galdiero, G. C. DeL’ero, and A. Marcatili, “Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins,” Infect. Immun., 65, 699–707 (1997).

    CAS  PubMed  Google Scholar 

  33. F. U. Hartl and M. Hayer-Hartl, “Molecular chaperones in the cytosol: from nascent chain to folded protein,” Science, 295, 1852–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. W. R. Heath, G. T. Belz, G. M. Behrens, C. M. Smith, S. P. Forehan, I. A. Parish, G. M. Davey, N. S. Wilson, F. R. Carbone, and J. A. Villadangos, “Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens,” Immunol. Rev., 199, 9–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. L. E. Hightower and L. M. Hendershot, “Molecular chaperones and the heat shock response at Cold Spring Harbor,” Cell Stress Chaperon, 2, 1–11 (1997).

    Article  CAS  Google Scholar 

  36. T. D. Ingolia and E. A. Craig, “Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin,” Proc. Natl. Acad. Sci. USA, 79, 2360–2364 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. M. Jaattela, “Heat shock proteins as cellular lifeguards,” Ann. Med., 31, 261–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. K. Karimi, J. E. Boudreau, and K. Fraser, “Enhanced antitumor immunity elicited by dendritic cell vaccines is a result of their ability to engage both CTL and IFN gamma-producing NK cells,” Mol. Ther., 16, No. 2, 411–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. K. V. Anderson, G. Jürgens, and C. Nüsslein-Volhard, “Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product,” Cell, 42, No. 3, 779–789 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. S. I. Katz, K. Tamaki, and D. H. Sachs, “Epidermal Langerhans cells are derived from cells originating in bone marrow,” Nature, 282, No. 5736, 324–326 (1979).

    Article  CAS  PubMed  Google Scholar 

  41. P. A. Kiener, P. Moran-Davis, A. F. Rankin Wahl, A. Aruffo, and D. Hollengaugh, “Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes,” J. Immunol., 155, 4917–4295 (1995).

    CAS  PubMed  Google Scholar 

  42. A. Kol, A. H. Lichtman, R. W. Finberg, P. Libby, and E. A. Kurt-Jones, “Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells,” J. Immunol., 164, 13–17 (2000).

    CAS  PubMed  Google Scholar 

  43. D. Li, L. Liu, H. Chen, T. Sawamura, and J. Mehta, “LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells,” Arterioscler. Thromb. Vasc. Biol., 23, No. 5, 816–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. S. Lindquist and E. A. Craig, “The heat-shock proteins,” Ann. Rev. Genet., 22, 631–677 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. S. E. Macatonia, N. A. Hosken, M. Kotton, P. Vieira, C. S. Hsieh, J. A. Culpepper, M. Wysocka, G. Trinchieri, K. M. Murphy, and A. O’Garra, “Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells,” J. Immunol., 154, 5071–5079 (1995).

    CAS  PubMed  Google Scholar 

  46. C. A. Martin, S. E. Carsons, R. Kowalewski, D. Bernstein, M. Valentino, and F. Santiago-Schwarz, “Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp) 70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming,” J. Immunol., 171, 5736–5742 (2003).

    CAS  PubMed  Google Scholar 

  47. R. Medzhitov, P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, and C. A. Janeway, “MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways,” Mol. Cell., 2, 253–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. L. Moretta, G. Ferlazzo, M. C. Mingari, G. Melioli, and A. Moretta, “Human natural killer cell function and their interactions with dendritic cells,” Vaccine, 21, S2/38–42 (2003).

    Google Scholar 

  49. B. Mukherji, N. G. Chakraborty, S. Yamasaki, T. Okino, H. Yamase, J. R. Sporn, S. K. Kurtzman, M. T. Ergin, J. Ozols, and J. Meehan, “Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells,” Proc. Natl. Acad. Sci. USA, 92, No. 17, 8078–8082 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. M. Muzio, G. Natoli, S. Saccani, M. Levrero, and A. Mantovani, “The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6),” J. Exp. Med., 187, 2097–2101 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. M. Muzio, J. Ni, P. Feng, and V. M. Dexit, “IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling,” Science, 278, 1612–1615 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. D. R. Palleros, L. Shi, K. L. Reid, and A. L. Fink, “Hsp70-protein complexes. Complex stability and conformation of bound substrate protein,” J. Biol. Chem., 269, 13107–13114 (1994).

    CAS  PubMed  Google Scholar 

  53. C. Retzlaff, Y. Yamamoto, P. S. Hoffman, H. Friedman, and T. W. Klein, “Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures,” Infect. Immun., 62, 5689–5693 (1994).

    CAS  PubMed  Google Scholar 

  54. C. Retzlaff,Y. Yamamoto, S. Okubo, P. S. Hoffman, P. S. Friedman, and T. W. Klein, “Legionella pneumophila heat-shock proteininduced increase of interleukin-1 mRNA involves protein kinase C signaling in macrophages,” Immunology, 89, 281–288 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. J. P. Ridge, F. Di Rosa, and P. Matzinger, “A conditioned dendritic cell can be a temporal bridge between a CD+ T-helper and a T-killer cell,” Nature, 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. F. A. Ritossa, “A new puffing pattern induced by temperature shock and DNP in Drosophila,” Experientia, 18, 571–573 (1962).

    Article  CAS  Google Scholar 

  57. J. Robert, T. Ramanayake, G. D. Maniero, H. Morales, and A. S. Chida, Phylogenetic conservation of glycoprotein 96 ability to interact with CD91 and facilitate antigen cross-presentation,” J. Immunol., 180, No. 5, 3176–3182 (2008).

    CAS  PubMed  Google Scholar 

  58. N. Romani, K. Koide, M. Crowley, M. Witmer-Pack, A. M. Livingstone, C. G. Fathman, K. Inaba, and R. M. Steinma, “Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells,” J. Exp. Med., 169, No. 3, 1169–1178 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. F. Sallusto, M. Cella, C. Daniele, and A. Lanzavecchia, “Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: down regulation by cytokines and bacterial products,” J. Exp. Med., 182, 389–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. T. Shimaoka, N. Kume, M. Minami, K. Hayashinda, T. Sawamura, T. Kita, and S. Yonehara, “LOX-1 supports adhesion of Gram-posi-tive and Gram-negative bacteria,” J. Immunol., 166, No. 8, 5108–5114 (2001).

    CAS  PubMed  Google Scholar 

  61. R. Shimazu, S. Akashi, H. Ogata, Y. Nagai, K. Fukudome, K. Miyake, and M. Kimoto, “MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4,” J. Exp. Med., 189, 1777–1782 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution,” J. Exp. Med., 137, No. 5, 1142–1162 (1973).

    Article  CAS  PubMed  Google Scholar 

  63. R. M. Steinmann, L. Hoffmann, and M. Pope, “Maturation and migration of cutaneous dendritic cells,” J. Invest. Dermatol., 105, 2S–8S (1995).

    Article  Google Scholar 

  64. D. C. Stokes, J. L. Shenep, M. Fishman,W. K. Hildner, G. K. Bysani, and K. Rufus, “Polymyxin B prevents lipopolysaccharide-induced release of tumor necrosis factors from alveolar macrophages,” J. Invest. Dis., 160, 52 (1989).

    CAS  Google Scholar 

  65. A. Tissieres, H. K. Mitchell, and U. Tracy, “Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs,” J. Mol. Biol., 84, 389–398 (1974).

    Article  CAS  PubMed  Google Scholar 

  66. S. Viriyakosol, T. Kirkland, K. Soldau, and P. Tobias, “MD-2 binds to bacterial lipopolysaccharide,” J. Endotoxin Res., 6, 489–491 (2000).

    CAS  PubMed  Google Scholar 

  67. T. Wan, X. Zhou, G. Chen, H. An, T. Chen, W. Zhang, S. Liu, Y. Jiang, F. Yang, Y. Wu, and X. Cao, “Novel heat shock protein Hsp70Ll activates dendritic cells and acts as a Thl polarizing adjuvant,” Blood, 103, 1747–1754 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Y. Wang, C. G. Kelly, M. Singh, E. G. McGowan, A. S. Carrara, L. A. Bergmeier, and T. Lehner, “Stimulation of Th-1 polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70,” J. Immunol., 169, 2422–2429 (2002).

    CAS  PubMed  Google Scholar 

  69. M. Yamamoto, S. Sato, H. Hemmi, H. Sanjo, S. Uematsu, T. Kaisho, K. Hoshino, O. Takeuchi, M. Kobayashi, T. Fujita, K. Takeda, and S. Akira, “Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4,” Nature, 420, No. 6913, 324–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. M. Yamamoto, S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, O. Takeuchi, K. Takeda, and S. Akira, “TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway,” Nat. Immunol., 4, No. 11, 1144–1150 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Severin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 95, No. 10, pp. 1011–1023, October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paltsev, M.A., Severin, S.E., Danilevskii, M.I. et al. Regulation of the Physiological Functions of Human Dendritic Cells by Recombinant Heat Shock Protein Hsp70. Neurosci Behav Physi 41, 74–82 (2011). https://doi.org/10.1007/s11055-010-9382-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-010-9382-5

Key words

Navigation