Skip to main content
Log in

Effects of Hypoxic Preconditioning on Expression of Transcription Factor NGFI-A in the Rat Brain after Unavoidable Stress in the “Learned Helplessness” Model

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here our immunocytochemical studies establishing that the development of a depression-like state in rats following unavoidable stress in a “learned helplessness” model is accompanied by stable activation of the expression of transcription factor NGFI-A in the dorsal hippocampus (field CA1) and the magnocellular paraventricular nucleus of the hypothalamus, along with an early wave of post-stress expression, which died down rapidly, in the ventral hippocampus (the dentate gyrus) and a long period of up to five days of high-level expression in the neocortex. In rats subjected to three sessions of preconditioning consisting of moderate hypobaric hypoxia (360 mmHg, 2 h, with intervals of 24 h), which did not form depression in these circumstances, there were significant changes in the dynamics of immunoreactive protein content in the hippocampus, with a stable increase in expression in the ventral hippocampus and only transient and delayed (by five days) expression in field CA1. In the neocortex (layer II), preconditioning eliminated the effects of stress, preventing prolongation of the first wave of NGFI-A expression to five days, while in the magnocellular hypothalamus, conversely, preconditioning stimulated a second (delayed) wave of the expression of this transcription factor. The pattern of NGFI-A expression in the hippocampus, neocortex, and hypothalamus seen in non-preconditioned rats appears to reflect the pathological reaction to aversive stress, which, rather than adaptation, produced depressive disorders. Post-stress modification of the expression of the product of the early gene NGFI-A in the brain induced by hypoxic preconditioning probably plays an important role in increased tolerance to severe psychoemotional stresses and is an important component of antidepressant mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. V. Beltikova and Ya. A. Kochetkov, “Characteristics of clinicalhormonal interactions in depressive disorders,” in: Current Problems in Psychiatric Endocrinology. Collection of Studies [in Russian], Moscow (2004), pp. 77–91.

  2. E. A. Rybnikova, V. I. Mironova, E. I. Tyulkova, and M. O. Samoilov, “Anxiolytic effects of moderate hypobaric hypoxia in rats in a model of post-traumatic stress disorder,” Zh. Vyssh. Nerv. Deyat., 4, 475–482 (2008).

    Google Scholar 

  3. E. A. Rybnikova, L. I. Khozhai, E. I. Tyulkova, T. S. Glushchenko, N. A. Sitnik, M. Pelto-Huikko, V. A. Otellin, and M. V. Samoilov, “Expression of early gene proteins, structural changes in brain neurons in hypobaric hypoxia, and the correcting effect of preconditioning,” Morfologiya, 125, No. 2, 10–15 (2004).

    CAS  Google Scholar 

  4. M. O. Samoilov, E. A. Rybnikova, E. I. Tyulkova, L. A. Vataeva, V. A. Otellin, and L. I. Khozhai, “Effects of hypobaric hypoxia on behavioral responses and early gene expression in the rat brain: the correcting effect of preconditioning,” Dokl. Ros. Akad. Nauk., 381, 513–515 (2001).

    CAS  Google Scholar 

  5. E. Belaidi, P. C. Beguin, C. Ribuot, and D. Godin-Ribuot, “Hypoxic preconditioning: role of transcription factor HIF-1alpha,” Ann. Cardiol. Angiol., 55, No. 2, 70–73 (2006).

    Article  CAS  Google Scholar 

  6. L. Bjartmar, I. M. Johansson, J. Marcusson, S. B. Ross, J. R. Seckl, and T. Olsson, “Selective effects on NGFI-A, MR, GR and NGFI-B hippocampal mRNA expression after chronic treatment with different subclasses of antidepressants in the rat,” Psychopharmacology (Berlin), 151, No. 1, 7–12 (2000).

  7. B. Bozon, S. Davis, and S. Laroche, “Regulated transcription of the immediate-early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation,” Hippocampus, 12, No. 5, 570–577 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. X. Cao, R. A. Koski, A. Gashler, M. McKiernan, C. F. Morris, R. Gaffney, R. V. Hay, and V. P. Sikhatme, “Identification and characterization of the EGR-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals,” Mol. Cell. Biol., 10, 1931–1939 (1990).

    CAS  PubMed  Google Scholar 

  9. Y. Dai, M. Xu,Y. Wang, Z. Pasha, T. Li, and M. Ashraf, “HIF-1alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia,” J. Mol. Cell. Cardiol., 42, No. 6, 1036–1044, (2007).

    Article  CAS  PubMed  Google Scholar 

  10. S. Davis, B. Bozon, and S. Laroche, “How necessary is the activation of the immediate early gene zif 268 in synaptic plasticity and learning?” Brain Res., 142, No. 1, 17–30 (2003).

    CAS  Google Scholar 

  11. S. Fulda and K. M. Debatin, “HIF-1-regulated glucose metabolism: a key to apoptosis resistance?” Cell Cycle, 6, No. 7, 790–792 (2007).

    CAS  PubMed  Google Scholar 

  12. M. T. Ghorbel, I. Seugnet, N. Hadj-Sahraoui, P. Topilko, G. Levi, and B. Demeneix, “Thyroid hormone effects on Krox-24 transcription in the post-natal mouse brain are developmentally regulated but are not correlated with mitosis,” Oncogene, 18, No. 4, 917–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. T. Herdegen and J. D. Leah, “Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins,” Brain Res. Rev., 28, No. 3, 370–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. D. M. Holtzman, R. A. Sheldon,W. Jaffe,Y. Cheng, and D. M. Ferriero, “Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury,” Ann. Neurol., 39, No. 1, 114–122 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. J. Honkaniemi and F. R. Sharp, “Global ischemia induces immediate-early genes encoding zinc finger transcription factors,” J. Cereb. Blood Flow Metab., 16, No. 4, 557–565 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. M. W. Jones, M. L. Errington, P. J. French, A. Fine, T. V. Bliss, S. Garel, P. Charnay, B. Bozon, S. Laroche, and S. Davis, “A requirement for the immediate early gene Zif268 in the expression of late LTP and longterm memories,” Nat. Neurosci., 4, No. 3, 289–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. E. Knapska and L. Kaczmarek, “A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK?” Prog. Neurobiol., 74, No. 4, 183–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. T. W. Lovenberg, M. G. Erlander, B. M. Baron, and J. G. Sutcliffe, “Cloning of new 5-HT receptors,” Int. Clin. Psychopharmacol., 8, Supplement 2, 19–23 (1993).

    Article  PubMed  Google Scholar 

  19. S. Morinobu, H. Strausbaugh, R. Terwilliger, and R. S. Duman, “Regulation of c-Fos and NGFI-A by antidepressant treatments,” Synapse, 25, No. 4, 313–320 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. T. Olsson, A. Hakansson, and J. R. Seckl, “Ketanserin selectively blocks acute stress-induced changes in NGFI-A and mineralocorticoid receptor gene expression in hippocampal neurons,” Neurosci., 76, No. 2, 441–448 (1997).

    Article  CAS  Google Scholar 

  21. G. Paxinos and G. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1986).

    Google Scholar 

  22. C. Pipaon, A. Santos, and A. Perez-Castillo, Thyroid hormone upregulates NGFI-A gene expression in rat brain during development,” J. Biol. Chem., 267, No. 1, 21–23 (1992).

    CAS  PubMed  Google Scholar 

  23. J. L. Plassat, N. Amlaiky, and R. Hen, “Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase,” Mol. Pharmacol., 44, No. 2, 229–236 (1993).

    CAS  PubMed  Google Scholar 

  24. J. B. Rosen, M. S. Fanselow, S. L. Young, M. Sitcoske, and S. Maren, “Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning,” Brain Res., 796, No. 1–2, 132–142 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. E. Rybnikova, V. Mironova, S. Pivina, R. Tulkova, N. Ordyan, L. Vataeva, E. Vershinina, E. Abritalin, A. Kolchev, N. Nalivaeva, A. J. Turner, and M. Samoilov, “Antidepressant-like effects of mild hypoxia preconditioning in the learned helplessness model in rats,” Neurosci. Lett., 417, No. 3, 234–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. E. Rybnikova, E. Tulkova, M. Pelto-Huikko, and M. Samoilov, “Mild preconditioning hypoxia modifies nerve growth factorinduced gene A messenger RNA expression in the rat brain induced by severe hypoxia,” Neurosci. Lett., 329, No. 1, 49–52, (2002).

    Article  CAS  PubMed  Google Scholar 

  27. E. Rybnikova, L. Vataeva, E. Tyulkova, T. Gluschenko, V. Otellin, M. Pelto-Huikko, and M. O. Samoilov, “Mild hypoxia preconditioning prevents impairment of passive avoidance learning and suppression of brain NGFI-A expression induced by severe hypoxia,” Behav. Brain Res., 160, No. 1, 107–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. E. A. Rybnikova,V. I. Mironova, S. G. Pivina, N. E. Ordyan, E. I. Tyulkova, and M. O. Samoilov, “Hypoxic preconditioning prevents development of post-stress depressions in rats,” Dokl. Biol. Sci., 411, 431–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. R. M. Sapolsky, “Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders,” Arch. Gen. Psychiatry, 57, 925–935 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. M. E. Seligman and G. Beagley, “Learned helplessness in the rat,” J. Comp. Physiol. Psychol., 88, 534–541 (1975).

    Article  CAS  PubMed  Google Scholar 

  31. E. Senba and T. Ueyama, “Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat,” Neurosci. Res., 29, No. 3, 183–207 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. F. R. Sharp, R. Ran, A. Lu,Y. Tang, K. I. Strauss, T. Glass, T. Ardizzone, and M. Bernaudin, “Hypoxic preconditioning protects against ischemic brain injury,” NeuroRx, 1, No. 1, 26–35 (2004).

    Article  PubMed  Google Scholar 

  33. M. Sheng and M. E. Greenberg, “The regulation and function of c-fos and other immediate early genes in the nervous system,” Neuron, 44, No. 4, 477–485 (1990).

    Article  Google Scholar 

  34. V. P. Sukhatme, X. Cao, L. C. Chang, C. Tsai-Morris, D. Stamenkovich, P. C. P. Ferreira, D. R. Cohen, S. A. Edwards, T. B. Shows, T. Curran, M. M. Le Beau, and E. D. Adamson, “A zinc fingerencoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization,” Cell, 53, 37–43 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. A. P. Tsou, A, Kosaka, C. Bach, P. Zuppan, C. Yee, L. Tom, R. Alvarez, D. Ramsey, D. W. Bonnhaus, E. Stefanich, et al., “Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylyl cyclase,” J. Neurochem., 63, No. 2, 456–464 (1994).

    CAS  PubMed  Google Scholar 

  36. R. Tupler, G. Perini, and M. R. Green, “Expressing the human genome,” Nature, 409, 832–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. T. Ueyama, H. Ohya, R. Yoshimura, and E. Senba, “Effects of ethanol on the stress-induced expression of NGFI-A mRNA in the rat brain,” Alcohol, 18, No. 2–3, 171–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. S. Umemoto,Y. Kawai, and E. Senba, “Differential regulation of IEGs in the rat PVH in single and repeated stress models,” Neuroreport, 6, No. 1, 201–204 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. J. Q. Wang, “Regulation of immediate early gene c-fos and zif/268 mRNA expression in rat striatum by metabotropic glutamate receptor,” Mol. Brain Res., 57, No. 1, 46–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. I. C. Weaver, A. C. D’Alessio, S. E. Brown, I. C. Hellstrom, S. Dymov, S. Sharma, M. Szyf, and M. J. Meaney, “The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes,” J. Neurosci., 27, No. 7, 1756–1768 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. V. L. Woodburn, N. J. Hayward, J. A. Poat, G. N. Woodruff, and J. Hughes, “The effect of dizocilpine and enadoline on immediate early gene expression in the gerbil global ischaemia model,” Neuropharmacology, 32, No. 10, 1047–1059 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Baranova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 95, No. 4, pp., 405–416, April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranova, K.A., Rybnikova, E.A., Mironova, V.I. et al. Effects of Hypoxic Preconditioning on Expression of Transcription Factor NGFI-A in the Rat Brain after Unavoidable Stress in the “Learned Helplessness” Model. Neurosci Behav Physi 40, 693–700 (2010). https://doi.org/10.1007/s11055-010-9313-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-010-9313-5

Key words

Navigation