Neuroscience and Behavioral Physiology

, Volume 39, Issue 5, pp 429–435 | Cite as

Levels of Spontaneous Activity and Spike Responses of Cortical Neurons to Local Administration of Excitatory Amino Acids to Their Dendrites and Bodies

  • Yu. S. Mednikova
  • F. V. Kopytova
  • M. N. Zhadin

Studies of cortical cortex slices showed that spontaneous neuron activity depended on the conditions of transmission of excitation from dendrites to the body. Studies using a measure of the efficiency of dendrosomatic conduction showed that cortical neurons constituted a significantly heterogeneous population. Spike reactions to direct excitation of cell bodies were relatively stable in neurons with different levels of spontaneous activity.

Key Words

cortical neurons spontaneous activity excitatory amino acids dendrites soma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Zaks, Statistical Evaluation [in Russian], Statistika, Moscow (1976).Google Scholar
  2. 2.
    N. N. Karpuk and V. V. Vorob’ev, “Role of the electrical properties of neurons in the mechanisms of discharge grouping in the cerebral cortex,” Zh. Vyssh. Nerv. Deyat., 53, No. 5, 595–603 (2003).Google Scholar
  3. 3.
    F. V. Kopytova, Yu. S. Mednikova, and E. N. Popova, “Levels of spontaneous activity as a result of heterogeneity of dendrite properties and their variation in cortical and hippocampal neurons,” in: Structural-Functional, Neurochemical, and Immunochemical Characteristics of the Asymmetry and Plasticity of the Brain (Conference Proceedings) [in Russian], Scientific Center for Neurology, Moscow (2007), pp. 397–402.Google Scholar
  4. 4.
    Yu. S. Mednikova, S. V. Karnup, and M. N. Zhadin, “Cholinergic modulation of neuron spike reactions to dendritic and somatic application of excitatory amino acids,” Zh. Vyssh. Nerv. Deyat., 52, No. 4, 479–488 (2002).Google Scholar
  5. 5.
    Yu. S. Mednikova, N. V. Pasikova, and F. V. Kopytova, “Effects of temperature of the spike activity of cortical neurons in guinea pigs,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 11, 1492–1500 (2002).Google Scholar
  6. 6.
    N. G. Mikhailova and M. I. Zaichenko, “Neurons in the right and left prefrontal areas of the rat cortex and stimulation of emotiogenic zones,” Zh. Vyssh. Nerv. Deyat., 48, No. 3, 431–437 (1998).Google Scholar
  7. 7.
    I. V. Pavlov and G. L. Vanetsian, “Activity of rabbit neocortex and hippocampus neurons during orientational-investigative behavior and freezing,” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 11, 1273–1284 (2006).Google Scholar
  8. 8.
    M. O. Samoilov, Reactions of Neurons to Hypoxia [in Russian], Nauka, Leningrad (1985).Google Scholar
  9. 9.
    N. O. Timofeeva, I. I. Semikopnaya, and N. Yu. Ivlieva, “Neuronal bases of the variability of individual adaptive behavior,” Usp. Sovrem. Biol., 119, No. 3, 311–320 (1999).Google Scholar
  10. 10.
    J. Bastian and J. Nguyenkim, “Dendritic modulation of burst-like firing in sensory neurons,” J. Neurophysiol., 85, No. 1, 10–22 (2001).PubMedGoogle Scholar
  11. 11.
    D. Berger, K. Pribram, H. Wild, and C. Bridges, “An analysis of neural spike-train distributions: determinants of the response of visual cortex neurons to changes in orientation and spatial frequency,” Exptl. Brain Res., 80, No. 1, 129–134 (1990).CrossRefGoogle Scholar
  12. 12.
    S. Franceschetti, T. Lavazza, G. Guria, P. Aracri, F. Panzica, G. Sancini, G. Avanzini, and J. Magistretti, “Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons,” J. Neurophysiol., 89, No. 4, 2101–2111 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    C. R. Houser, G. D. Crawford, P. M. Salvaterra, and J. E. Vaughn, “Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses,” J. Comp. Neurol., 234, No. 1, 17–34 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Krnjevic, R. Pumain, and L. Renaud, “The mechanism of excitation by acetylcholine in the cerebral cortex,” J. Physiol., 215, No. 1, 247–268 (1971).PubMedGoogle Scholar
  15. 15.
    A. U. Larkman, G. Major, K. J. Stratford, and J. J. B. Jack, “Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV. Electrical geometry,” J. Comp. Neurol., 323, 137–152 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    B.-Q. Mao, F. Hamzei-Sichani, D. Aronov, and R. Yuste, Dynamics of spontaneous activity in neocortical slices,” Neuron, 32, 883–898 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    D. A. McCormick and D. A. Prince, “Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro,” J. Physiol., 375, 169–194 (1986).PubMedGoogle Scholar
  18. 18.
    Y. S. Mednikova and S. R. Karnup, “Functional geometry of amino acid sensitive membrane of layer V neurons in the guinea-pig neocortex in vitro,” Neurosci., 69, No. 1, 115–123 (1995).CrossRefGoogle Scholar
  19. 19.
    W. Rall, R. E. Burke, W. R. Holmes, J. J. B. Jack, S. J. Redman, and I. Segev, “Matching dendritic neuron models to experimental data,” Physiol. Rev., 72, No. 4, Supplement, S159–S186 (1992).Google Scholar
  20. 20.
    S. R. Williams and G. J. Stuart, “Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons,” Science, 295, 1907–1910 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • Yu. S. Mednikova
    • 1
  • F. V. Kopytova
    • 2
  • M. N. Zhadin
    • 3
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.State Research Institute of NeurologyRussian Academy of Medical SciencesMoscowRussia
  3. 3.Institute of Cell BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations