Neuroscience and Behavioral Physiology

, Volume 38, Issue 5, pp 471–475 | Cite as

From gene to aggressive behavior: The role of brain serotonin

  • N. K. Popova


This article addresses a question at the juncture of neurophysiology and neurogenetics — the role of the brain neurotransmitter serotonin in the genetic control of behavior. Published data are presented, along with results obtained from studies performed at the Behavioral Neurogenomics Laboratory. The role of protein elements of the brain serotonin system (key enzymes in serotonin metabolism and serotonin 5-HT1A receptors), which are subject to the direct influence of genes, in the genetic predisposition to aggressive behavior is discussed. Experimental results obtained in Norwegian rats selected over more than 50 generations for the absence of aggressivity and for high aggressivity to humans are presented, along with data from experiments on mouse lines and mice with genetic knockout of MAO A. These data provide evidence that 1) brain serotonin makes a significant contribution to the mechanisms underlying genetically determined individual differences in aggressivity, and 2) the genes encoding the main enzymes of serotonin metabolism in the brain (tryptophan hydroxylase-1 and MAO A) and the 5-HT1A receptor are members of a set of genes modulating aggressive behavior.

Key words

aggressive behavior behavioral genetics serotonin tryptophan hydroxylase-2 monoamine oxidase A 5-HT1A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. B. Vishnivetskaya, I. Z. Plyusnina, and N. K. Popova, “Involvement of 5-HT1A receptors in regulating different types of aggressive behavior,” Zh. Vyssh. Nerv. Deyat., 51, No. 6, 715–719 (2001).Google Scholar
  2. 2.
    N. K. Popova, “Genetic knockout — the first steps and perspectives for the neurophysiology of behavior,” Usp. Fiziol. Nauk., 31, No. 2, 3–13 (2000).PubMedGoogle Scholar
  3. 3.
    N. K. Popova, “Genetic knockout of MAO A: neurotransmitter metabolism in brain structures and behavior,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No. 8, 342–348 (2004).Google Scholar
  4. 4.
    N. K. Popova, M. A. Gilinskii, and T. G. Amstislavskaya, “Effects of genetic knockout of monoamine oxidase A on dopamine metabolism in brain structures in mice,” Byull. Éksperim. Biol. Med., 137, No. 4, 434–436 (2004).Google Scholar
  5. 5.
    N. K. Popova, M. A. Gilinskii, T. G. Amstislavskaya, and E. A. Morozova, “Effects of genetic knockout of monoamine oxidase A on catecholamines and serotonin in brain structures in mice,” Neirokhimiya, 21, No. 1, 34–38 (2004).Google Scholar
  6. 6.
    N. K. Popova, Yu. A. Skrinskaya, T. G. Amstislavskaya, G. B. Vishnivetskaya, I. Seif, and E. De Maeyer, “Characteristics of behavior in mice with genetic knockout of monoamine oxidase A,” Zh. Vyssh. Nerv. Deyat., 50, No. 6, 991–998 (2000).Google Scholar
  7. 7.
    V. Arango, Y. Huang, M. D. Underwood, and J. J. Mann, “Genetics of the serotonin system in suicidal behavior,” J. Psychiat. Res., 37, 375–386 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    H. G. Brunner, M. Nelen, X. Breakefield, H. Ropers, and B. A. Van Oost, “Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A,” Science, 262, 578–580 (1993).PubMedCrossRefGoogle Scholar
  9. 9.
    O. Cases, I. Seif, J. Grimsby, P. Gaspar, and K. Chen, “Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAO A,” Science, 268, 1763–1766 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    E. De Maeyer, I. Seif, O. Cases, and P. Gaspar, “Aggressive behavior and altered amounts of brain 5-HT in mice lacking monoamine oxidase A,” in: Violence: From Biology to Society, J. S. Grisolia et al. (eds.), Elsevier Science, Amsterdam (1997), pp. 71–78.Google Scholar
  11. 11.
    A. V. Kulikov, D. V. Osipova, V. S. Naumenko, and N. K. Popova, “Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity and aggressiveness in mouse strains,” Genes Brain Behavior, 4, No. 8, 482–485 (2005).CrossRefGoogle Scholar
  12. 12.
    V. M. Linnoila and M. Virkkunen, “Aggression, suicidality, and serotonin,” J. Clin. Psychiatry, 53, Supplement 10, 46–51 (1992).PubMedGoogle Scholar
  13. 13.
    I. Lucki, A. Singh, and D. S. Kreiss, “Antidepressant-like behavioral effects of serotonin receptor agonists,” Neurosci. Biobehav. Rev., 18, No. 1, 85–95 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    K. A. Miczek, J. Mos, and B. Olivier, “Brain 5-HT and inhibition of aggressive behavior in animals: 5-HIAA and receptor subtypes,” Psychopharmacol. Bull., 25, 399–403 (1989).PubMedGoogle Scholar
  15. 15.
    D. J. Nutt and P. Glue, “Clinical pharmacology of anxiolytics and antidepressants: a psycho-pharmacological perspective,” in: Psychopharmacology of Anxiolytics and Antidepressants, D. E. File (ed.), Pergamon Press, New York (1991), pp. 1–28.Google Scholar
  16. 16.
    R. V. Parsey, M. A. Oguendo, N. R. Simpson, R. Ogden, R. Van Heertum, et al., “Effect of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-ll] WAY-100635,” Brain Res., 954, No. 2, 173–182 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Peddeer, “Psychoanalytic views of aggression: some theoretical problems,” Brit. J. Med. Psychol., 65, 95–106 (1992).Google Scholar
  18. 18.
    G. Pineyro and P. Blier, “Autoregulation of serotonin neurons: role in antidepressant drug action,” Pharmacol. Rev., 51, No. 3, 533–591 (1999).PubMedGoogle Scholar
  19. 19.
    I. Plyusnina and I. Oskina, “Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans,” Physiol. Behav., 61, 381–385 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    N. K. Popova, “Brain serotonin in genetically defined defensive behavior,” in: Complex Brain Functions: Conceptual Advances in Russian Neuroscience, R. Millar, A. M. Ivanitsky, and P. M. Balaban (eds.), Harwood Press (1999), pp. 317–329.Google Scholar
  21. 21.
    N. K. Popova, “From genes to aggressive behavior: the role of serotonergic system,” BioEssays, 28, No. 5, 494–503 (2006).CrossRefGoogle Scholar
  22. 22.
    N. K. Popova, D. F. Avgustinovich, D. G. Kolpakov, and I. Z. Plyusnina, “Specific [3H] 8-OH-DPAT binding in brain regions of rats genetically predisposed to various defense behavior strategies,” Pharmacol. Biochem. Behav., 48, No. 2, 322–329 (1998).Google Scholar
  23. 23.
    N. K. Popova, M. A. Gilinsky, T. G. Amstislavskaya, E. A. Morosova, I. Seif, and E. De Maeyer, “Regional 5-HT metabolism in the brain of transgenic mice lacking monoamine oxidase A,” Neurosci. Res., 66, 423–427 (2001).CrossRefGoogle Scholar
  24. 24.
    N. K. Popova, A. V. Kulikov, E. M. Nikulina, E. Yu. Kozlachkova, and G. B. Maslova, “Serotonin metabolism and serotonergic receptors in Norway rats selected for low aggressiveness to man,” Aggress. Behav., 17, 207–213 (1991).CrossRefGoogle Scholar
  25. 25.
    N. K. Popova, V. S. Naumenko, I. Z. Plyusnina, and A. V. Kulikov, “Reduction in 5-HT1A receptor density, 5-HT1A mRNA expression, and functional correlates for 5-HT1A receptors in genetically defined aggressive rats,” J. Neurosci. Res., 80, 286–292 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    N. K. Popova, G. B. Vishnivetskaya, E. A. Ivanova, J. A. Skrinskaya, and I. Seif, “Altered behavior and alcohol tolerance in transgenic mice lacking MAO A: a comparison with effects of MAO A inhibitor clorgyline,” Pharmacol. Biochem. Behav., 67, No. 4, 719–727 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    N. K. Popova, N. N. Voitenko, A. V. Kulikov, and D. Avgustinovich, “Evidence for the involvement of central serotonin in mechanism of domestication of silver foxes,” Pharmacol. Biochem. Behav., 40, 751–756 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    J. C. Shih, K. Chen, and M. J. Ridd, “Monoamine oxidase: from genes to behavior,” Ann. Rev. Neurosci., 22, 197–217 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    D. J. Walther and M. Bader, “A unique central tryptophan hydroxylase isoform,” Biochem. Pharmacol., 66, 1673–1680 (2003).PubMedCrossRefGoogle Scholar
  30. 30.
    World Report on Violence and Health, World Health Organization, Geneva (2002).Google Scholar
  31. 31.
    X. Zhang, J. M. Beaulieu, T. D. Sotnikova, R. R. Gainetdinov, and M. G. Caron, “TPH-2 controls brain serotonin synthesis,” Science, 305, 217–227 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • N. K. Popova
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations