Neuroscience and Behavioral Physiology

, Volume 38, Issue 4, pp 399–405 | Cite as

The role of dopamine-dependent negative feedback in the hippocampus-basal ganglia-thalamus-hippocampus loop in the extinction of responses

  • I. G. Sil’kis


A mechanism for the extinction of the responses of hippocampal and dopaminergic neurons to repeated sensory stimuli is proposed, based on dopamine-dependent negative feedback in the hippocampus-basal ganglia-thalamus-hippocampus loop. Activation of hippocampal neurons evoked by a new stimulus facilitates the appearance of responses in dopaminergic neurons as a result of disinhibition via striopallidal cells of the nucleus accumbens and ventral pallidum. However, increases in dopamine levels and activation of D2 receptors on striopallidal cells, facilitating depression of hippocampal inputs, prevent disinhibition of dopaminergic neurons, such that their responses start to decline. Subsequent reductions in actions on D1 receptors lead to decreases in the efficiency of excitation both of neurons in hippocampal field CA1 and strionigral cells in the nucleus accumbens. The direct pathway via the basal ganglia mediates disinhibition of the thalamic nucleus reuniens, exciting neurons in field CA1, which leads to extinction of the responses of hippocampal neurons, decreases in disinhibition of dopaminergic cells, and further extinction of their responses.

Key words

hippocampus basal ganglia dopamine synaptic plasticity extinction of responses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. S. Vinogradova, “Neuroscience at the end of the second millennium: a paradigm shift,” Zh. Vyssh. Nerv. Deyat., 50, No. 5, 743–774 (2000).Google Scholar
  2. 2.
    I. G. Sil’kis, “Involvement of dopamine in the enhancement of cortical signals activating NMDA receptors in the striatum (a hypothetical mechanism),” Ros. Fiziol. Zh. im. I. M. Sechenova, 87, No. 12, 1569–1578 (2001).Google Scholar
  3. 3.
    I. G. Sil’kis, “A unified postsynaptic mechanism for the influences of various neuromodulators on the modification of excitatory and inhibitory inputs to hippocampal neurons (a hypothesis),” Usp. Fiziol. Nauk., 33, No. 1, 40–56 (2002).PubMedGoogle Scholar
  4. 4.
    I. G. Sil’kis, “The role of the basal ganglia in the generation of visual hallucinations (a hypothetical mechanism),” Zh. Vyssh. Nerv. Deyat., 55, No. 5, 592–607 (2005).Google Scholar
  5. 5.
    V. T. Shuvaev and N. F. Suvorov, The Basal Ganglia and Behavior [in Russian], Nauka, St. Petersburg (2001).Google Scholar
  6. 6.
    H. W. Berendse, H. J. Groenewegen, and A. H. Lohman, “Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat,” J. Neurosci., 12, No. 6, 2079–2103 (1992).PubMedGoogle Scholar
  7. 7.
    S. M. Brudzynski and C. J. Gibson, “Release of dopamine in the nucleus accumbens caused by stimulation of the subiculum in freely moving rats,” Brain Res. Bull., 42, No. 4, 303–308 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Charara and A. A. Grace, “Dopamine receptor subtypes selectively modulate excitatory afferents from the hippocampus and amygdala to rat nucleus accumbens neurons,” Neuropsychopharmacology, 28, No. 8, 1412–1421 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    V. I. Chefer, I. Zakharova, and T. S. Shippenberg, “Enhanced responsiveness to novelty and cocaine is associated with decreased basal dopamine uptake and release in the nucleus accumbens: quantitative microdialysis in rats under transient conditions,” J. Neurosci., 23, No. 7, 3076–3084 (2003).PubMedGoogle Scholar
  10. 10.
    E. Dommett, V. Coizet, C. D. Blaha, J. Martindale, V. Lefebvre, N. Walton, J. E. Mayhew, P. G. Overton, and P. Redgrave, “How visual stimuli activate dopaminergic neurons as short latency,” Science, 307, No. 5714, 1476–1479 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    K. J. Feasey-Truger and G. ten Bruggencate, “The NMDA receptor antagonist CPP suppresses long-term potentiation in the rat hippocampal-accumbens pathway in vivo,” Eur. J. Neurosci., 6, No. 8, 1247–1254 (1994).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Fischer, T. Furmark, G. Wik, and M. Fredrikson, “Brain representation of habituation to repeated complex visual stimulation studied with PET,” Neuroreport, 11, No. 1, 123–126 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    S. B. Floresco, C. D. Blaha, C. R. Yang, and A. G. Phillips, “Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection,” J. Neurosci., 21, No. 8, 2851–2860 (2001).PubMedGoogle Scholar
  14. 14.
    S. B. Floresco, C. L. Todd, and A. A. Grace, “Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons,” J. Neurosci., 21, No. 13, 4915–4922 (2001).PubMedGoogle Scholar
  15. 15.
    T. Goto and A. A. Grace, “Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization,” Neuron, 47, No. 2, 255–266 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    H. J. Groenewegen, Y. Galis-de Graaf, and W. J. Smeets, “Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats,” Chem. Neuroanat., 16, No. 3, 167–185 (1999).CrossRefGoogle Scholar
  17. 17.
    H. J. Groenewegen, P. Room, M. P. Witter, and A. H. Lohman, “Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques,” Neurosci., 7, No. 4, 977–996 (1982).CrossRefGoogle Scholar
  18. 18.
    H. J. Groenewegen, O. A. van den Heuvel, D. C. Cath, P. Voorn, and D. J. Veltman, “Does an imbalance between the dorsal and ventral striatopallidal systems play a role in Tourette’s syndrome? A neuronal circuit approach,” Brain Dev., 25, Supplement 1, S3–S14 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    H. J. Groenewegen, E. Vermeulen-Van der Zee, A. te Kortschot, and M. P. Witter, “Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin,” Neurosci., 23, No. 1, 103–120 (1987).CrossRefGoogle Scholar
  20. 20.
    M. J. Hunt, K. Kessal, and R. Garcia, “Ketamine induces dopamine-dependent depression of evoked hippocampal activity in the nucleus accumbens in freely moving rats,” J. Neurosci., 25, No. 2, 524–531 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    E. Ince, B. J. Ciliax, and A. I. Levey, “Differential expression of D1 and D2_dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons,” Synapse, 27, No. 4, 357–366 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Joel and I. Weiner, “The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum,” Neurosci., 96, No. 3, 451–474 (2000).CrossRefGoogle Scholar
  23. 23.
    M. Kimura, T. Minamimoto, N. Matsumoto, N. Matsumoto, and Y. Hori, “Monitoring and switching of cortico-basal ganglia loop functions by the thalamo-striatal system,” Neurosci. Res., 48, No. 2, 355–360 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Legault and R. A. Wise, “Injections of N-methyl-D-aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens,” Eur. J. Neurosci., 13, No. 4, 819–828 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Li, W. K. Cullen, R. Anwyl, and M. J. Rowan, “Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty,” Nat. Neurosci., 6, No. 5, 526–531 (2003).PubMedGoogle Scholar
  26. 26.
    J. E. Lisman and A. A. Grace, “The hippocampal-VTA loop: controlling the entry of information into long-term memory,” Neuron, 46, No. 5, 703–713 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Lodge and A. A. Grace, “The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation,” Neuropsychopharmacology, 31, No. 7, 1356–1361 (2006).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Lund-Balta and S. N. Haber, “The organization of midbrain projections to the ventral striatum in the primate,” Neurosci., 59, No. 3, 609–623 (1994).CrossRefGoogle Scholar
  29. 29.
    J. T. McKenna and R. P. Vertes, “Afferent projections to nucleus reuniens of the thalamus,” J. Comp. Neurol., 480, No. 2, 115–142 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    P. O’Donnell and A. A. Grace, “Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input,” J. Neurosci., 15, No. 5, 3622–3639 (1995).PubMedGoogle Scholar
  31. 31.
    A. Parent and L. N. Hazrati, “Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry,” Brain Res. Rev., 20, No. 1, 128–154 (1995).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Parent, F. Sato, Y. Wu, M. Levesque, and M. Parent, “Organization of the basal ganglia: the importance of axonal collateralization,” Trends Neurosci., 23, No. 10, S20–S27 (2000).PubMedCrossRefGoogle Scholar
  33. 33.
    O. T. Phillipson and A. C. Griffiths, “The topographic order of inputs to nucleus accumbens in the rat,” Neurosci., 16, No. 2, 275–296 (1985).CrossRefGoogle Scholar
  34. 34.
    S. Robinson, D. M. Smith, S. J. Mizumori, and R. D. Palmiter, “Firing properties of dopamine neurons in freely moving dopamine-deficient mice: effects of dopamine receptor activation and anesthesia,” Proc. Natl. Acad. Sci. USA, 101, No. 36, 13329–13334 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    B. H. Schott, D. B. Sellner, C. J. Lauer, R. Habib, J. U. Frey, S. Guderian, H. J. Heinze, and E. Duzel, “Activation of midbrain structures by associative novelty and the formation of explicit memory in humans,” Learn. Mem., 11, No. 4, 383–387 (2004).PubMedCrossRefGoogle Scholar
  36. 36.
    W. Schulz, P. Apicella, and T. Ljungberg, “Responses of monkey dopamine neurons to reward and conditions stimuli during successive steps of learning a delayed response task,” J. Neurosci., 13, No. 3, 900–913 (1993).Google Scholar
  37. 37.
    P. Seeman and H. H. van Tol, “Dopamine receptor pharmacology,” Curr. Opin. Neurol. Neurosurg., 6, No. 4, 602–608 (1993).PubMedGoogle Scholar
  38. 38.
    I. Silkis, “Synaptic plasticity in the cortico-basal ganglia-thalamocortical circuit. I. Modification rules for excitatory and inhibitory synapses in the striatum,” Biosystems, 57, No. 3, 187–196 (2000).PubMedCrossRefGoogle Scholar
  39. 39.
    I. Silkis, “The corticobasal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia,” Biosystems, 59, No. 1, 7–14 (2001).PubMedCrossRefGoogle Scholar
  40. 40.
    E. T. Tabuchi, A. B. Mulder, and S. I. Wiener, “Position and behavioral modulation of synchronization of hippocampal and accumbens neuronal discharges in freely moving rats,” Hippocampus, 10, No. 6, 717–728 (2000).PubMedCrossRefGoogle Scholar
  41. 41.
    Z. Y. Tong, P. G. Overton, and D. Clark, “Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events,” Synapse, 22, No. 3, 195–208 (1996).PubMedCrossRefGoogle Scholar
  42. 42.
    R. V. van Oosten, M. M. Verheij, and A. R. Cools, “Bilateral nigral 6-hydroxydopamine lesions increase the amount of extracellular dopamine in the nucleus accumbens,” Exptl. Neurol., 191, No. 1, 24–32 (2005).CrossRefGoogle Scholar
  43. 43.
    R. P. Vertes, “Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens,” J. Comp. Neurol., 442, No. 2, 163–187 (2002).PubMedCrossRefGoogle Scholar
  44. 44.
    P. Voorn, C. R. Gerfen, and H. J. Groenewegen, “Compartmental organization of the ventral striatum of the rat: immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein,” J. Comp. Neurol., 289, No. 2, 189–201 (1989).PubMedCrossRefGoogle Scholar
  45. 45.
    P. Voorn, G. Roest, and H. J. Groenewegen, “Increase of enkephalin and decrease of substance P immunoreactivity in the dorsal and ventral striatum of the rat after midbrain 6-hydroxydopamine lesions,” Brain Res., 412, No. 2, 391–396 (1987).PubMedCrossRefGoogle Scholar
  46. 46.
    B. C. Wittman, B. H. Schott, S. Guderian, J. U. Frey, H. J. Heinze, and E. Duzel, “Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation,” Neuron, 45, No. 3, 459–467 (2005).CrossRefGoogle Scholar
  47. 47.
    M. Yanagihara, K. Niimi, and K. Ono, “Thalamic projections to the hippocampal and entorhinal areas in the cat,” J. Comp. Neurol., 266, No. 1, 122–141 (1987).PubMedCrossRefGoogle Scholar
  48. 48.
    C. R. Yang and G. J. Mogenson, “An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens,” Neurosci., 15, No. 4, 1015–1024 (1985).CrossRefGoogle Scholar
  49. 49.
    C. R. Yang and G. J. Mogenson, “Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system,” Brain Res., 324, No. 1, 69–84 (1984).PubMedCrossRefGoogle Scholar
  50. 50.
    C. R. Yang and G. J. Mogenson, “Hippocampal signal transmission to the pedunculopontine nucleus and its regulation by dopamine D2 receptors in the nucleus accumbens: an electrophysiological and behavioural study,” Neurosci., 23, No. 3, 1041–1055 (1987).CrossRefGoogle Scholar
  51. 51.
    D. X. Zhang and E. H. Bertram, “Midline thalamic region: widespread excitatory input to the entorhinal cortex and amygdala,” J. Neurosci., 22, No. 8, 3277–3284 (2002).PubMedGoogle Scholar
  52. 52.
    P. Zheng, X. X. Zhang, B. S. Bunney, and W. X. Shi, “Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine,” Neurosci., 91, No. 2, 527–535 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • I. G. Sil’kis
    • 1
  1. 1.Learning Neurophysiology Laboratory, Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations