Neuroscience and Behavioral Physiology

, Volume 38, Issue 1, pp 87–92 | Cite as

Intracellular expression of c-Fos protein in various structures of the hypothalamus in electrical pain stimulation and administration of antigens

  • Yu. V. Gavrilov
  • S. V. Perekrest
  • N. S. Novikova


Application of different stimuli activated different hypothalamic structures. Immunohistochemical methods demonstrated changes in the numbers of c-Fos-positive cells in various hypothalamic structures after electrical pain stimulation and i.v. administration of antigens (bovine serum albumin (BSA) and lipopolysaccharide (LPS)). Increases in the numbers of c-Fos-positive cells in all the hypothalamic structures studied occurred after electrical pain stimulation and i.v. administration of antigens (BSA and LPS). The highest level of activation in hypothalamic structures was seen in the anterior hypothalamic nucleus (AHN) and posterior hypothalamic area (PH) after electrical pain stimulation and in the paraventricular nucleus (PVN) and lateral hypothalamic area level 28 (LHA-28) after i.v. administration of LPS. Comparative analysis showed that the level of activation of hypothalamic structures after electrical pain stimulation was significantly greater in the AHN, PVN, LHA, and PH than after i.v. administration of antigens (LPS and BSA). Administration of LPS led to more marked activation of cells in hypothalamic structures APH, PVN, LHA-28, dorsomedial hypothalamic nucleus (DMH), and PH (in terms of the numbers of c-Fos-positive cells) than administration of BSA.

Key Words

c-Fos electrical pain stimulation lipopolysaccharide bovine serum albumin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. Bogolepova, Structure and Development of the Human Hypothalamus [in Russian], Meditsina, Leningrad (1968).Google Scholar
  2. 2.
    E. A. Korneva and L. M. Khai, “Effects of lesioning of parts of the hypothalamic area on the process of immunogenesis,” Fiziol. Zh. SSSR, 49, No. 1, 42–48 (1963).PubMedGoogle Scholar
  3. 3.
    E. A. Korneva, “Influences of local lesioning of structures of the posterior hypothalamus on the intensity of protein synthesis in the blood and organs of rabbits,” Fiziol. Zh. SSSR, 55, No. 1, 93–98 (1969).PubMedGoogle Scholar
  4. 4.
    V. A. Lesnikov, S. B. Adzhieva, and E. N. Isaeva, “Hypothalamic modulation of the hematopoetic function of the bone marrow,” in: Proceedings of the First All-Union Immunology Congress, Moscow (1989), Vol. 1, p. 331.Google Scholar
  5. 5.
    N. S. Novikova, T. B. Kazakova, V. Rodgers, and E. A. Korneva, “Comparative analysis of the location and intensity of c-fos gene expression in defined structures of the hypothalamus in mechanical and electrical pain stimulation,” Patogenez, 2, 73–79 (2004).Google Scholar
  6. 6.
    S. N. Olenev and A. S. Olenev, Neurobiology-95 [in Russian], SPbGPMA Press, St. Petersburg (1995).Google Scholar
  7. 7.
    A. L. Polenov, Hypothalamic Neurosecretion [in Russian], Nauka, Moscow (1971).Google Scholar
  8. 8.
    A. M. Basso, G. Gioino, V. A. Molina, and L. M. Cancela, “Chronic amphetamine facilitates immunosuppression in response to a novel aversive stimulus: reversal by haloperidol pretreatment,” Pharmacol. Biochem. Behav., 62, No. 2, 307–314 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    D. W. Beno and R. E. Kimura, “Nonstressed rat model of acute endotoxemia that unmasks the endotoxin-induced TNF-alpha response,” Amer. J. Physiol., 276, H671–H678 (1999).PubMedGoogle Scholar
  10. 10.
    H. O. Besedovsky and A. del Rey, “Immune-neuroendocrine interactions: facts and hypotheses,” Endocr. Rev. 17, 64 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    G. J. Brenner and J. A. Moynihan, “Stressor-induced alterations in immune response and viral clearance following infection with herpes simplex virus-type 1 in BALB/c and C57B1/6 mice,” Brain Behav. Immun., 11, No. 1, 9–23 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    E. Bullitt, “Expression of c-Fos-like protein as a marker for neuronal activity following noxious stimulation in the rat,” J. Comp. Neurol., 296, 517 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    J. K. Elmquist and C. B. Saper, “Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide,” J. Comp. Neurol., 374, No. 3, 315–331 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    R. P. A. Gaykema, L. E. Goehler, C. B. Armstrong, J. Khorsand, S. F. Maier, and L. R. Watkins, “Differential FOS expression in rat brain induced by lipopolysaccharide and staphylococcal enterotoxin B,” Neuroimmunomodulation, 6, 220 (1999).CrossRefGoogle Scholar
  15. 15.
    L. E. Goehler, R. P. A. Gaykema, and K. Hansen, “Staphylococcal enterotoxin B induces fever, brain c-Fos expression, and serum corticosterone in rats,” Amer. J. Physiol. Reg. Integr. Comp. Physiol., 280, R1434–R1439 (2001).Google Scholar
  16. 16.
    E. Goujon, P. Parnet, S. Laye, C. Combe, K. W. Kelly, and R. Dantzer, “Stress downregulates lipopolysaccharide-induced expression of proinflammatory cytokines in the spleen, pituitary, and brain of mice,” Brain Behav. Immun., 94, No. 4, 292–303 (1995).CrossRefGoogle Scholar
  17. 17.
    K. J. Kovacs, “c-Fos as a transcription factor: a stressful (re)view from a functional map,” Neurochem. Int., 33, 287–297 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    J. C. Meltzer, B. J. MacNeil, V. Sanders, S. Pylypas, A. H. Jansen, A. H. Greenberg, and D. M. Nance, “Stress-induced suppression of in vivo splenic cytokine production in the rat by neural and hormonal mechanisms,” Brain Behav. Immun., 18, No. 3, 262–273 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    A. M. Passerin, G. Cano, B. S. Rabin, B. A. Delano, J. L. Napier, and A. F. Sved, “Role of locus coeruleus in foot shock-evoked fos expression in rat brain,” Neurosci., 101, No. 4, 1071–1082 (2000).CrossRefGoogle Scholar
  20. 20.
    S. Rassnick, G. E. Hoffman, B. S. Rabiand, and A. F. Sved, “Injection of corticotropin-releasing hormone into the locus coeruleus or foot shock increases neuronal fos expression,” Neurosci., 85, No. 1, 259–268 (1998).CrossRefGoogle Scholar
  21. 21.
    Brain Maps: Computer Graphics Files, L. W. Swanson (ed.), Elsevier Sci. BV, Amsterdam (1992).Google Scholar
  22. 22.
    Y. H. Zhang, J. Lu, J. K. Elmquist, and C. B. Saper, “Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord,” J. Neurosci., 20, 6578 (2000).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • Yu. V. Gavrilov
    • 1
  • S. V. Perekrest
    • 1
  • N. S. Novikova
    • 1
  1. 1.Department of General Pathology and Pathophysiology, Institute of Experimental MedicineRussian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations