Advertisement

Neuroscience and Behavioral Physiology

, Volume 37, Issue 7, pp 739–746 | Cite as

Effects of leucine-enkephalin on potassium currents in neurons in the rat respiratory center in vitro

  • A. N. Inyushkin
Article

Abstract

Experiments to identify the neuronal mechanisms underlying the respiratory activity of the opioid peptide leucine-enkephalin were performed on transverse slices of the rat brainstem in voltage-clamped conditions; studies addressed the effects of this peptide (10 nM–1 µM) on the potassium A current and the inward potassium current of neurons in two areas of the respiratory center: the ventrolateral area of the solitary tract nucleus and the pre-Bötzinger complex. The parameters of the A current assessed in all respiratory center neurons studied showed no change in the presence of leucine-enkephalin. At the same time, leucine-enkephalin produced reversible increases in the amplitude of the inward potassium current. These results provide evidence that the inhibitory effect of leucine-enkephalin at the level of respiratory center neurons is at least in part explained by its stimulatory action on the inward potassium current but is not associated with modulation of the potassium A current.

Key words

respiratory center solitary tract nucleus pre-Bötzinger complex leucine-enkephalin potassium A current inward potassium current 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Inyushkin, “Effects of leucine-enkephalin on the membrane potential and activity of neurons in the rat respiratory center in vitro,” Ros. Fiziol. Zh. im. I. M. Sechenova, 91, No. 6, 656–665 (2005).Google Scholar
  2. 2.
    A. N. Inyushkin, “Respiratory and hemodynamic reactions in rats to microinjection of opioids into the solitary tract nucleus,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 3, 112–121 (1997).Google Scholar
  3. 3.
    A. N. Inyushkin, “Thyroliberin blocks the calcium A current in respiratory center neurons in adult rats in vitro,” Ros. Fiziol. Zh. im. I. M. Sechenova, 89, No. 12, 1560–1568 (2003).Google Scholar
  4. 4.
    U. Arvidson, D. R. Dado, M. Riedl, J. H. Lee, P. Y. Law, H. H. Loh, R. Elde, and M. W. Wessendorf, “δ-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin,” J. Neurosci., 15, 1215–1235 (1995).Google Scholar
  5. 5.
    K. Ballanyi, P. M. Lalley, B. Hoch, and D. W. Richter, “cAMP-dependent reversal of opioid-and prostaglandin-mediated depression of the isolated respiratory network in newborn rats,” J. Physiol. (London), 504, 127–134 (1997).CrossRefGoogle Scholar
  6. 6.
    K. Ballanyi, H. Onimaru, and I. Homma, “Respiratory network function in the isolated brainstem-spinal cord of newborn rats,” Progr. Neurobiol., 59, 583–634 (1999).CrossRefGoogle Scholar
  7. 7.
    J. Beise, A. N. Inyushkin, and Fr.-K. Pierau, “Effect of temperature on A-currents of three types of PO/AH neurones in rat brain slices,” Eur. J. Neurosci., Supplement 10, Abstract 64.15 (1998).Google Scholar
  8. 8.
    P. Y. Cheng, L. Y. Liu-Chen, C. Chen, and V. M. Pickel, “Immunolabeling of mu opioid receptors in the rat nucleus of the solitary tract: extrasynaptic plasmalemmal localization and association with Leu5-enkephalin,” J. Comp. Neurol., 371, 522–536 (1996).PubMedCrossRefGoogle Scholar
  9. 9.
    A. D. Corbett, S. J. Paterson, and H. W. Kosterlitz, “Selectivity of ligands for opioid receptors,” in: Handbook of Experimental Pharmacology, Opioids, Springer, Berlin (1993), pp. 645–679.Google Scholar
  10. 10.
    J. M. Delfs, H. Kong, A. Mestek, Y. Y. L. Chen, T. Reisine, and M. F. Chesselet, “Expression of mu opioid mRNA in rat brain: an in situ hybridisation study at the single cell level,” J. Comp. Neurol., 345, 46–68 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Denavit-Saubie and A. S. Foutz, “Neuropharmacology of respiration,” in: Neural Control of Respiratory Muscles, CRC Press, Boca Raton, Florida (1997), pp. 143–157.Google Scholar
  12. 12.
    H. U. Dodt and W. Zieglgansberger, “Visualizing unstained neurones in living brain slices by infrared DIC-videomicroscopy,” Brain Res., 537, 333–336 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    F. A. Edwards, A. Konnerth, B. Sakmann, and T. Takahashi, “A thin slice preparation for patch clamp recordings from neurons of the mammalian central nervous system,” Pflugers Arch., 414, 600–612 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    G. D. Funk, J.C. Smith, and J. L. Feldman, “Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids,” J. Neurophysiol., 70, 1497–1515 (1993).PubMedGoogle Scholar
  15. 15.
    P. A. Gray, J. C. Reckling, M. Bocciaro, and J. L. Feldman, “Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the pre-Bötzinger complex,” Science, 286, 1566–1568 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    J. J. Greer, J. E. Carter, and Z. Al-Zubaidy, “Opioid depression of respiration in neonatal rats,” J. Physiol. (London), 485, 845–855 (1995).Google Scholar
  17. 17.
    A. Haji, R. Takeda, and M. Okazaki, “Neuropharmacology of control of respiratory rhythm and pattern in mature mammals,” Pharmacol. Ther., 86, 277–304 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Hilaire and B. Duron, “Maturation of the mammalian respiratory system,” Physiol. Rev., 79, No. 2, 325–360 (1999).PubMedGoogle Scholar
  19. 19.
    B. Hille, Ionic Channels of Excitable Membranes, Sunderland (1992), Second Edition.Google Scholar
  20. 20.
    C.-F. Hsiao and S. H. Chandler, “Characteristics of a fast transient outward current in guinea pig trigeminal motoneurons,” Brain Res., 695, 217–226 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    A. N. Inyushkin, J. Beise, and Fr.-K. Pierau, “Differences in A-currents of neurons in rat hypothalamic slices at physiological and room temperature,” Eur. J. Physiol. (Pflugers Arch.), 345,Supplement 6, R91, 1–2 (1998).Google Scholar
  22. 22.
    A. N. Inyushkin, J. Beise, and Fr.-K. Pierau, “Temperature effects on transient K+ currents in three types of hypothalamic neurones in rat brain slices,” J. Physiol. (London), 527P, 125P (2000).Google Scholar
  23. 23.
    A. N. Inyushkin, S. A. Chepurnov, and N. A. Merkulova, “Respiratory and circulatory effects of opioid peptides microinjected into the solitary tract nucleus,” Regul. Pept., 64, 1–3, 75 (1996).CrossRefGoogle Scholar
  24. 24.
    S. M. Johnson, J. C. Smith, and J. L. Feldman, “Modulation of respiratory rhythm in vitro, role of Gi/o protein-mediated mechanisms,” J. Appl. Physiol., 80, 2120–2133 (1996).PubMedGoogle Scholar
  25. 25.
    C. Jiang, N. Cui, and J. Wu, “An alternative approach to the identification of respiratory central chemoreceptors in the brainstem,” Resp. Physiol., 129, 141–157 (2001).CrossRefGoogle Scholar
  26. 26.
    A. Laferriere, J. K. Liu, and I. R. Moss, “Mu-and delta-opioid receptor densities in respiratory-related brainstem regions of neonatal swine,” Dev. Brain Res., 112, 1–9 (1999).CrossRefGoogle Scholar
  27. 27.
    P.-Y. Law, Y. Wong, and H. Loh, “Molecular mechanisms and regulation of opioid receptor signaling,” Ann. Rev. Pharmacol. Toxicol., 40, 389–430 (2000).CrossRefGoogle Scholar
  28. 28.
    Y. Y. Liu, M. T. Wong-Riley, J. P. Liu, X. Y. Wei, Y. Jia, H. L. Liu, F. Fujiyama, and G. Ju, “Substance P and enkephalinergic synapses onto neurokinin-1 receptor-immunoreactive neurons in the pre-Bötzinger complex of rats,” Eur. J. Neurosci., 19, 65–75 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Lonergan, A. K. Goodchild, M. J. Christie, and P. M. Pilowsky, “Presynaptic delta opioid receptors differentially modulate rhythm and pattern generation in the ventral respiratory group of the rat,” Neurosci., 121, 959–973 (2003).CrossRefGoogle Scholar
  30. 30.
    A. Mansour, C. A. Fox, S. Burke, F. Meng, R. C. Thompson, H. Akil, and S. J. Watson, “Mu, delta and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridisation study,” J. Comp. Neurol., 350, 412–438 (1994).PubMedCrossRefGoogle Scholar
  31. 31.
    M.-P. Morin-Surun, E. Boudinot, M. C. Fournie-Zaluski, J. Champagnat, B. P. Roques, and M. Denavit-Saubie, “Control of breathing by endogenous opioid peptides: possible involvement in sudden infant death syndrome,” Neurochem. Int., 20, 103–107 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    C. G. Nichols and A. N. Lopatin, “Inward rectifier potassium channels,” Ann. Rev. Physiol., 59, 171–191 (1997).CrossRefGoogle Scholar
  33. 33.
    J. C. Smith, D. F. Funk, S. M. Johnson, and J. L. Feldman, “Wholecell patch-clamp recordings,” in: Ventral Brainstem Mechanisms and Control of Respiration and Blood Pressure, Dekker, New York (1995), pp. 463–496.Google Scholar
  34. 34.
    H. Sontheimer, “Cellular and synaptic mechanisms generating respiratory rhythm: insights from in vitro and computational studies,” in: Patch-Clamp Applications and Protocols, Humana Press, Totowa (1995), pp. 37–73.CrossRefGoogle Scholar
  35. 35.
    J. W. Spain, B. L. Roth, and C. J. Coscia, “Differential ontogeny of multiple opioid receptors (μ-, δ-, and κ-),” J. Neurosci., 5, 584–588 (1985).PubMedGoogle Scholar
  36. 36.
    K. Takita, E. A. Herlenius, S. G. E. Lindahl, and Y. Yamamoto, “Actions of opioids on respiratory activity via activation of brainstem by μ-, δ-, and κ-receptors; an in vitro study,” Brain Res., 778, 233–241 (1997).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Trapp, M. Luckermann, P. A. Brooks, and K. Ballanyi, “Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity,” J. Physiol. (London), 496, 695–710 (1996).Google Scholar
  38. 38.
    J. T. Williams, R. A. North, and T. Tokimasa, “Inward rectification of resting and opiate-activated potassium currents in rat locus coeruleus neurons,” J. Neurosci., 8, No. 11, 4299–4306 (1988).PubMedGoogle Scholar
  39. 39.
    J. Wu, H. Hu, W. Shen, and C. Jiang, “Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats,” J. Membrane Biol., 197, 179–191 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. N. Inyushkin
    • 1
  1. 1.Samara State UniversitySamaraRussia

Personalised recommendations