Advertisement

Neuroscience and Behavioral Physiology

, Volume 37, Issue 5, pp 451–457 | Cite as

Changes in spontaneous brain bioelectrical activity during transcranial electrical and electromagnetic stimulation

  • E. V. Sharova
  • A. V. Mel’nikov
  • M. R. Novikova
  • M. A. Kulikov
  • T. N. Grechenko
  • E. D. Shekhter
  • A. Yu. Zaslavskii
Article

Abstract

The systems responses of the brain to therapeutic transcranial electrical and electromagnetic stimulation were studied and the neurophysiological criteria for assessing the efficacy of this treatment were identified using comparative clinical and experimental studies with analysis of spontaneous bioelectrical activity, along with assessment of behavioral and clinical measures. Study groups consisted of six patients with chronic post-traumatic unconscious states during courses of transcranial electrical stimulation and 17 intact Wistar rats subjected to transcranial electromagnetic stimulation. A relationship was found between the effects of transcranial stimulation and the initial level of intercenter interactions of brain bioelectrical activity assessed in terms of coherence. Hypersynchronization of biopotentials, identified as a major element in the reactivity to this type of stimulation, may be of the greatest value in the recovery of patients with cerebral pathology in cases with initially reduced levels of intercenter interactions in the absence of pathologically increased functional connections in the brain.

Key words

transcranial electrical and electromagnetic stimulation intercenter coherence relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. A. Aleksanyan, E. B. Lyskov, G. V. Kataeva, F. A. Gurchin, I. G. Zavolokov, and S. V. Mozhaev, “Use of transcranial electromagnetic stimulation for the treatment of motor and speech disorders in patients after strokes,” Ros. Fiziol. Zh., 90, No. 8, 1–2 (2004).Google Scholar
  2. 2.
    Human Brain Biopotentials [in Russian], V. C. Rusinov (ed.), Meditsina, Moscow (1987).Google Scholar
  3. 3.
    V. G. Voronov, “Identification of statistically significant features in the frequency spectra of electroencephalograms and the application of these methods to clinical diagnostic tasks,” in: Proceedings of the 8th International Conference “New Information Technology in Medicine and Ecology” [in Russian], Gurzuf, Ukraine (2000), pp. 244–245.Google Scholar
  4. 4.
    R. F. Gimranov, Transcranial Magnetic Stimulation [in Russian], OOO PKF Allana, Moscow (2002).Google Scholar
  5. 5.
    T. N. Grechenko and E. D. Shekhter, “Effects of electric shock on the electrical activity of neurons in a mollusk,” in: Functional Organization of Brain Activity [in Russian], Nauka, Moscow (1975), pp. 137–138.Google Scholar
  6. 6.
    Yu. G. Grigor’ev, “Bioeffects associated with modulated electromagnetic fields in acute experiments,” in: Yearbook of the Russian National Committee for Protection from Non-Ionizing Radiation [in Russian], Moscow (2004), pp. 16–72.Google Scholar
  7. 7.
    A. Yu. Zaslavskii and G. S. Markarov, “The ‘Infita’ pulse-based low-frequency physiotherapy apparatus,” Med. Tekhnika, No. 5, 18–20 (1994).Google Scholar
  8. 8.
    V. P. Lebedev, “Transcranial electrostimulation: a new approach,” in: Tanscranial Electrostimulation [in Russian], P. D. Dvoretskii (ed.), I. P. Pavlov Institute of Physiology (GNPP “Iskusstvo Rossii”), St. Petersburg (1998), pp. 22–39.Google Scholar
  9. 9.
    S. S. Nikitina and A. L. Jurenkov, Magnetic Stimulation in the Diagnosis and Treatment of Nervous System Diseases [in Russian], ZAO InfoMed, Moscow (2003).Google Scholar
  10. 10.
    E. N. Sokolov and T. N. Grechenko, “Reversible weakening of post-tetanic reactions of a mollusk neuron after string direct hyperpolarizing stimulation”, Neirofiziologiya, 6, No. 2, 192–196 (1974).Google Scholar
  11. 11.
    Yu. A. Kholodov, “Neurobiological approaches to magnetotherapy,” in: The Magnetotherapy of Nervous System Diseases [in Russian], R. F. Gimranov (ed.), OOO PKF Allana, Moscow (2002), pp. 3–18.Google Scholar
  12. 12.
    E. V. Sharova, “Involvement of the frontal lobes in post-coma restoration of mental activity in humans,” in: Proceedings of the XXX All-Russia Congress on Problems in Higher Nervous Activity [in Russian], St. Petersburg (2000), Vol. 2, pp. 567–568.Google Scholar
  13. 13.
    E. V. Sharova, V. G. Amcheslavskii, A. A. Potapov, V. L. Anzimirov, O. S. Zaitsev, V. K. Emel’yanov, and V. A. Shabalov, “EEG effects of therapeutic electrostimulation of the CNS in post-traumatic unconsciousness,” Fiziol. Cheloveka, 27, No. 2, 29–39 (2001).PubMedGoogle Scholar
  14. 14.
    E. V. Sharova, M. R. Novikova, M. A. Kulikov, L. V. Shishkina, B. M. Sidorov, and A. V. Mel’nikov, “Reaction of the rat brain to acute stem injury in terms of measures of the dynamics of cerebral electrical activity,” Zh. Vyssh. Nerv. Deyat., 53, No. 2, 228–239 (2003).Google Scholar
  15. 15.
    Yu. Yaroslavskii and R. Kh. Bel’meker, “Transcranial magnetic stimulation in psychiatry,” Zh. Nevrol. Psikhiatr., 97, No. 6, 68–70 (1997).Google Scholar
  16. 16.
    O. Grindel, N. Romanova, O. Zaitsev, V. Voronov, and I. Skoriatina, “EEG-mathematical analysis of psychopathological syndromes in severely head-injured patients,” in: Neurotrauma, A. Potapov and L. Likhterman (eds.), K. R. H. von Wild-Antidor, Moscow (2002), pp. 125–133.Google Scholar
  17. 17.
    J. Jenkins, P. M. Shajahan, J. M. Lappin, and K. P. Ebmeier, “Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers,” BMC Psychiatry, 2, No. 1, 1–5 (2002).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Jing, M. Takigawa, K. Hamada, H. Okamura, and Y. Kawaika, “Effects of high frequency repetitive transcranial magnetic stimulation on P300 event-related potentials,” Clin. Neurophysiol., 112, 304–317 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Kohler, T. Paus, R. L. Burckner, and B. Milner, “Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study,” J. Cogn. Neurosci., 16, No. 2, 178–188 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Tsubokawa, “Deep brain stimulation therapy for a persistent vegetative state,” J. Neurotrauma, 12, No. 3, 345 (1995).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • E. V. Sharova
    • 1
    • 2
  • A. V. Mel’nikov
    • 1
    • 2
  • M. R. Novikova
    • 1
    • 2
  • M. A. Kulikov
    • 1
    • 2
  • T. N. Grechenko
    • 1
    • 2
  • E. D. Shekhter
    • 1
    • 2
  • A. Yu. Zaslavskii
    • 1
    • 2
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscow
  2. 2.Institute of PsychologyRussian Academy of SciencesMoscow

Personalised recommendations