Neuroscience and Behavioral Physiology

, Volume 36, Issue 6, pp 573–579 | Cite as

The effects of leucine-enkephalin on the membrane potential and activity of rat respiratory center neurons in vitro

  • A. N. Inyushkin


Studies of transverse slices of Wistar rat brainstem using a patch clamp technique addressed the effects of the opioid peptide leucine-enkephalin (10 nM–1 μM) on the membrane potential and pattern of spontaneous activity of neurons in two parts of the respiratory center: the ventrolateral area of the solitary tract nucleus and the pre-Bötzinger complex. Leucine-enkephalin induced membrane hyperpolarization of respiratory center neurons and decreased the level of spike activity in spontaneously active cells. In pre-Bötzinger complex neurons showing a burst pattern of activity, leucine-enkephalin decreased the burst frequency, and two cells showed a transition from burst activity to tonic activity. These results provide evidence that the mechanism of the central respiratory activity of leucine-enkephalin results from its direct action on the membranes of respiratory center neurons.

Key words

respiratory center solitary tract nucleus pre-Bötzinger complex leucine-enkephalin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Inyushkin, “Effects of thyroliberin on the membrane potential and the pattern of spontaneous activity of rat respiratory center neurons in vitro,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 11, 1467–1476 (2002).Google Scholar
  2. 2.
    A. N. Inyushkin, “The respiratory effects of leucine-enkephalin: the role of the ventrolateral parts of the medulla oblongata,” in: The Neurohumoral Mechanisms of Control of Respiration and Circulation [in Russian], Samara (1991), pp. 34–40.Google Scholar
  3. 3.
    A. N. Inyushkin, “Respiratory and hemodynamic reactions to microinjections of opioids into the solitary tract nucleus in rats,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 3, 112–121 (1997).Google Scholar
  4. 4.
    U. Arvidsson, R. J. Dado, J. H. Lee, P. Y. Law, H. H. Loh, R. Elde, and M. W. Wessendorf, “δ-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin,” J. Neurosci., 15, 1215–1235 (1995).PubMedGoogle Scholar
  5. 5.
    K. Ballanyi, P. M. Lalley, B. Hoch, and D. W. Richter, “C-AMP-dependent reversal of opioid-and prostaglandin-mediated depression of the isolated respiratory network in newborn rats,” J. Physiol. (London), 504, 127–134 (1997).CrossRefGoogle Scholar
  6. 6.
    K. Ballanyi, H. Onimura, and I. Homma, “Respiratory network function in the isolated brainstem-spinal cord of newborn rats,” Progr. Neurobiol., 59, 583–634 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Y. Cheng, L. Y. Liu-Chen, C. Chen, and V. M. Pickel, “Immunolabeling of mu opioid receptors in the rat nucleus of the solitary tract: extrasynaptic plasmalemmal localization and association with Leu5-enkephalin,” J. Comp. Neurol., 371, 522–536 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    A. D. Corbett, S. J. Paterson, and H. W. Kosterlitz, “Selectivity of ligands for opioid receptors,” in: Handbook of Experimental Pharmacology. Opioids I, Springer, Berlin (1993), pp. 645–679.Google Scholar
  9. 9.
    D. De Castro, J. Lipski, and R. Kanjhan, “Electrophysiological study of dorsal respiratory neurons in the medulla oblongata of the rat,” Brain Res., 639, 49–56 (1994).PubMedCrossRefGoogle Scholar
  10. 10.
    J. M. Delfs, H. Kong, A. Mestek, Y. Y. L. Chen, T. Reisine, and M. F. Chesselet, “Expression of mu opioid mRNA in rat brain: an in situ hybridisation study at the single cell level,” J. Comp. Neurol., 345, 46–68 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    C. A. Del Negro, S. M. Johnson, R. J. Butera, and J. C. Smith, “Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions,” J. Neurophysiol., 86, No. 1, 59–74 (2001).PubMedGoogle Scholar
  12. 12.
    M. Denavit-Saubie and A. S. Foutz, “Neuropharmacology of respiration,” in: Neural Control of Respiratory Muscles, CRC Press, Boca Raton, Florida (1997), pp. 143–157.Google Scholar
  13. 13.
    H. U. Dodt and W. Zieglgansberger, “Visualizing unstained neurones in living brain slices by infrared DIC-videomicroscopy,” Brain Res., 537, 333–336 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    G. D. Funk, J. C. Smith, and J. L. Friedman, “Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids,” J. Neurophysiol., 70, 1497–1515 (1993).PubMedGoogle Scholar
  15. 15.
    P. A. Gray, J. C. Reckling, M. Bocchiaro, and J. L. Feldman, “Modulation of respiratory frequency by peptidergic input to thythmogenic neurons in the pre-Bötzinger complex,” Science, 286, 1566–1568 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    J. J. Greer, J. E. Carter, and Z. Al-Zubaidy, “Opioid depression of respiration in neonatal rats,” J. Physiol. (London), 485, 845–855 (1995).Google Scholar
  17. 17.
    A. Haji, R. Takeda, and M. Okazaki, “Neuropharmacology of control of respiratory rhythm and pattern in mature mammals,” Pharmacol. Ther., 86, 277–304 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Hilaire and B. Duron, “Maturation of the mammalian respiratory system,” Physiol. Rev., 79, No. 2, 325–360 (1999).PubMedGoogle Scholar
  19. 19.
    A. N. Inyushkin, S. A. Chepurnov, and N. A. Merkulova, “Respiratory and circulatory effects of opioid peptides microinjected into the solitary tract nucleus,” Regul. Peptides, 64, No. 1–3, 75 (1996).CrossRefGoogle Scholar
  20. 20.
    S. M. Johnson, N. Koshiva, and J. C. Smith, “Isolation of the kernel for respiratory rhythm generation in novel preparation. The pre-Bötzinger complex ‘island’,” J. Neurophysiol., 85, No. 4, 1772–1776 (2001).PubMedGoogle Scholar
  21. 21.
    S. M. Johnson, J. C. Smith, and J. L. Feldman, “Modulation of respiratory rhythm in vitro: role of Gi/0 protein-mediated mechanisms,” J. Appl. Physiol., 80, 2120–2133 (1996).PubMedGoogle Scholar
  22. 22.
    N. Koshiya and J. C. Smith, “Neuronal pacemaker for breathing visualized in vitro,” Nature, 400, No. 6742, 360–363 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Laferriere, J. K. Liu, and I. R. Moss, “Mu-and delta-opioid receptor densities in respiratory-related brainstem regions of neonatal swine,” Dev. Brain Res., 112, 1–9 (1999).CrossRefGoogle Scholar
  24. 24.
    Y. Y. Liu, M. T. Wong-Riley, J. P. Liu, X. Y. Wei, Y. Jia, H. L. Liu, F. Fujiyama, and G. Ju, “Substance P and enkephalinergic synapses into neurokinin-1 receptor-immunoreactive neurons in the pre-Bö tzinger complex of rats,” Eur. J. Neurosci., 19, 65–75 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Lonerghan, A. K. Goodchild, M. J. Christie, and P. M. Pilowski, “Presynaptic delta opioid receptors differentially modulate rhythm and pattern generation in the ventral respiratory group of the rat,” Neurosci., 121, 959–973 (2003).CrossRefGoogle Scholar
  26. 26.
    A. Mansour, C. A. Fox, S. Burke, F. Meng, R. C. Thompson, H. Akil, and S. J. Watson, “Mu, delta and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridisation study,” J. Comp. Neurol., 350, 412–438 (1994).PubMedCrossRefGoogle Scholar
  27. 27.
    N. M. Mellen and J. L. Feldman, “Phasic vagal sensory feedback transforms respiratory neuron activity in vitro,” J. Neurosci., 21, 7363–7371 (2001).PubMedGoogle Scholar
  28. 28.
    N. M. Mellen, W. A. Janczewski, C. M. Bocchiaro, and J. L. Feldman, “Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation,” Neuron, 37, 821–826 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    M.-P. Morin-Surun, E. Boudinot, C. Dubois, H. W. Matthes, B. L. Kieffer, M. Denavit-Saubie, J. Champagnat, and A. S. Foutz, “Respiratory function in adult mice lacking the μ-opioid receptor: role of δ-receptors,” Eur. J. Neurosci., 13, 1703–1710 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    M.-P. Morin-Surun, E. Boudinot, M. C. Fournie-Zaluski, J. Champagnat, B. P. Roques, and M. Denavit-Saubie, “Control of breathing by endogenous opioid peptides: possible involvement in sudden infant death syndrome,” Neurochem. Int., 20, 103–107 (1992).PubMedCrossRefGoogle Scholar
  31. 31.
    J. F. R. Paton, J.-M. Ramirez, and D. W. Richter, “Mechanisms of respiratory rhythm generation change profoundly during early life in mice and rats,” Neurosci. Lett., 170, 167–170 (1994).PubMedCrossRefGoogle Scholar
  32. 32.
    O. Pierrefiche, A. S. Foutz, and M. Denavit-Saubie, “NMDA and non-NMDA receptors may play different roles in timing mechanisms and transmission in the feline respiratory network,” J. Physiol. (London), 474, 509–523 (1994).Google Scholar
  33. 33.
    J.-M. Ramirez and D. W. Richter, “The neuronal mechanisms of respiratory rhythm generation,” Curr. Opin. Neurobiol., 6, 817–825 (1996).PubMedCrossRefGoogle Scholar
  34. 34.
    J. C. Rekling and J. L. Feldman, “Pre-Bötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation,” Ann. Rev. Physiol., 60, 385–405 (1998).CrossRefGoogle Scholar
  35. 35.
    H. Sontheimer, “Whole-cell patch-clamp recordings,” in: Patch-Clamp Applications and Protocols, Humana Press, Totowa (1995), pp. 37–73.Google Scholar
  36. 36.
    J. W. Spain, B. L. Roth, and C. J. Cascia, “Differential ontogeny of multiple opioid receptors (μ, δ, and κ),” J. Neurosci., 5, 584–588 (1985).PubMedGoogle Scholar
  37. 37.
    T. Stasinopoulos, A. K. Goodchild, J. P. Chalmers, M. J. Christie, and P. M. Pilowsky, “Delta opioid receptors are presynaptic and mu opioid receptors are postsynaptic on bulbospinal neurons in rat ventral respiratory group,” Soc. Neurosci. Abstr., 26, 929 (2000).Google Scholar
  38. 38.
    S. Takeda, L. I. Eriksson, Y. Yamamoto, H. Joensen, H. Onimary, and S. G. Lindahl, “Opioid action on respiratory neuron activity of the isolated respiratory network in newborn rats,” Anesthesiology, 95, 740–749 (2001).PubMedCrossRefGoogle Scholar
  39. 39.
    K. Takita, E. A. P. Herlenius, S. G. E. Lindahl, and Y. Yamamoto, “Actions of opioids on respiratory activity via activation of brainstem by μ-, δ-and κ-receptors; an in vitro study,” Brain Res., 778, 233–241 (1997).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Thoby-Brisson and J.-M. Ramirez, “Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice,” J. Neurophysiol., 86, No. 1, 104–112 (2001).PubMedGoogle Scholar
  41. 41.
    M. Yeadon and I. Kitchen, “Opioids and respiration,” Progr. Neurobiol., 33, 1–16 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. N. Inyushkin
    • 1
  1. 1.Samara State UniversitySamaraRussia

Personalised recommendations