Neuroscience and Behavioral Physiology

, Volume 36, Issue 4, pp 335–339 | Cite as

Acquisition and extinction of a conditioned passive avoidance reflex in mice with genetic knockout of monoamine oxidase A

  • N. I. Dubrovina
  • N. K. Popova
  • M. A. Gilinskii
  • R. A. Tomilenko
  • I. Seif


We report here the results obtained from comparative analysis of learning and the dynamics of extinction of a conditioned passive avoidance response in mice with genetic knockout of monoamine oxidase A (MAO A) and the progenitor line C3H. Mice of both lines acquired the conditioned passive avoidance reaction efficiently. Mice with genetic knockout of MAO A were characterized by prolonged retention of reproduction of the memory trace, as compared with rapid extinction in C3H mice. Smaller numbers of transfers, and vertical rearings on days 7–13 and the numbers of glances into and rom the dark sector on days 11–13 of extinction in MAO A-knockout mice appear to reflect their more marked fear reactions when confronted with the “dangerous” sector, along with increased anxiety, these facilitating longer-lasting retention of the memory trace.

Key words

genetic knockout reproduction passive avoidance memory extinction MAO A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Dubrovina and L. V. Loskutova, Dopaminergic Mechanisms of Memory and Attention [in Russian], Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk (2003).Google Scholar
  2. 2.
    I. P. Lapin, “Decreases in the frequency of glancing from a dark sector — the single consistent measure of the effects of anxiogens on behavior in mice in the ‘light-dark’ chamber,” Zh. Vyssh. Nerv. Deyat., 49, No. 3, 521–536 (1999).Google Scholar
  3. 3.
    N. K. Popova, “Genetic knockout — first steps and perspectives for the neurophysiology of behavior,” Usp. Fiziol. Nauk., 31, No. 2, 3–13 (2000).PubMedGoogle Scholar
  4. 4.
    N. K. Popova, Yu. A. Skrinskaya, T. G. Amstislavskaya, S. B. Vishnivetskaya, I. Seif, and E. D. Maier, “Characteristics of the behavior of mice with genetic knockout of monoamine oxidase A,” Zh. Vyssh. Nerv. Deyat., 50, No. 6, 991–999 (2000).Google Scholar
  5. 5.
    E. N. Sokolov and N. I. Nezlina, “Long-term memory, neurogenesis, and the novelty signal,” Zh. Vyssh. Nerv. Deyat., 53, No. 4, 451–461 (2003).Google Scholar
  6. 6.
    H. C. Brunner, M. Nelen, X. O. Breakfield, H. H. Ropers, and B. A. van Ost, “Abnormal behavior associated with a point mutation in the structural gene monoamine oxidase A,” Science, 262, 578–580 (1993).PubMedGoogle Scholar
  7. 7.
    O. Cases, J. Grimsby, P. Gaspar, K. Chen, S. Pournin, U. Muller, M. Aguet, C. Babinet, J. C. Shih, and E. De Mayer, “Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA,” Science, 268, 1763–1766 (1995).PubMedGoogle Scholar
  8. 8.
    C. Castellano, S. Cabib, and S. Puglisi-Allegra, “Psychopharmacology of memory modulation: Evidence for multiple interaction among neurotransmitters and hormones,” Behav. Brain Res., 77, 1–21 (1996).CrossRefPubMedGoogle Scholar
  9. 9.
    E. C. Clayton and C. L. Williams, “Adrenergic activation of the nucleus tractus solitarius potentiates amygdala norepinephrine release and enhances retention performance in emotionally arousing and spatial memory tasks,” Behav. Brain Res., 112, 151–158 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    A. Evrard, I. Malagie, A. M. Laporte, C. Boni, N. Hanoun, A. C. Trillat, I. Seif, E. de Maeyer, A. Gardier, M. Hamon, and J. Adrien, “Altered regulation of the 5-HT system in the brain of MAO A knock-out mice,” Eur. J. Neurosci., 15, 841–851 (2002).CrossRefPubMedGoogle Scholar
  11. 11.
    M. Frnak and J. J. Braszko, “Moclobemide enhances aversively motivated learning and memory in rats,” Pol. J. Pharmacol., 51, 497–503 (1999).Google Scholar
  12. 12.
    D. P. Holschneider, K. Chen, I. Seif, and J. C. Shih, “Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B,” Brain Res. Bull., 56, 453–462 (2001).CrossRefPubMedGoogle Scholar
  13. 13.
    T. M. Jay, “Dopamine: a potential substrate for synaptic plasticity and memory mechanisms,” Progr. Neurobiol., 69, 375–390 (2003).CrossRefPubMedGoogle Scholar
  14. 14.
    J. J. Kim, J. C. Shih, L. Chen, L. Chen, S. Maren, S. G. Anagnostaras, M. S. Fanselow, E. de Maeyer I. Seif, and R. F. Thompson, “Selective enhancement of emotional, but not motor learning in monoamine oxidase A-deficient mice,” Proc. Natl. Acad. Sci. USA, 94, 5929–5933 (1997).PubMedGoogle Scholar
  15. 15.
    K. M. Lattal and T. Abel, “Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear,” J. Neurosci., 21, 5773–5780 (2001).PubMedGoogle Scholar
  16. 16.
    K. C. Liang, “Pre-or posttraining injection of buspirone impaired retention in the inhibitory avoidance task: involvement of amygdala 5-HT1A receptors,” Eur. J. Neurosci., 11, 1491–1500 (1999).CrossRefPubMedGoogle Scholar
  17. 17.
    Y. Maki, T. Inoue, T. Izumi, I. Muraki, K. Ito, Y. Kitaichi, X. Li, and T. Koyama, “Monoamine oxidase inhibitors reduce conditioned fear stress-induced freezing behavior in rats,” Eur. J. Pharmacol., 406, 411–418 (2000).CrossRefPubMedGoogle Scholar
  18. 18.
    J. L. McGaugh, C. K. McIntyre, and A. E. Power, “Amygdala modulation of memory consolidation: interaction with other brain systems,” Neurobiol. Learn. Mem., 78, 539–552 (2002).CrossRefPubMedGoogle Scholar
  19. 19.
    A. Meneses, “Physiological, pathophysiological and therapeutic roles of 5-HT systems in learning and memory,” Rev. Neurosci., 9, 275–289 (1998).PubMedGoogle Scholar
  20. 20.
    N. K. Popova, M. F. Gilinsky, T. G. Amstislavskaya, E. A. Morosova, I. Seif, and E. De Maeyer, “Regional serotonin metabolism in the brain of transgenic mice lacking monoamine oxidase A,” J. Neurosci. Res., 66, 423–427 (2001).CrossRefPubMedGoogle Scholar
  21. 21.
    D. Quartermain, V. G. deSoria, and A. Kwan, “Calcium channel antagonists enhance retention of passive avoidance and maze learning in mice,” Neurobiol. Learn. Mem., 75, 77–90 (2001).CrossRefPubMedGoogle Scholar
  22. 22.
    R. L. Riberio, R. Andreatini, C. Wolfman, H. Viola, J. H. Medina, and C. Da Cunha, “The ‘anxiety state’ and its relation with rat models of memory and habituation,” Neurobiol. Learn. Mem., 72, 78–94 (1999).Google Scholar
  23. 23.
    D. C. Riccio, J. Ackil, and A. Burch-Vernon, “Forgetting of stimulus attributes: methodological implications for assessing associative phenomena,” Psychol. Bull., 112, 433–445 (1992).CrossRefPubMedGoogle Scholar
  24. 24.
    A. Romaniuk, M. Koprowska, M. Krotewicz, M. Strelczuk, and M. Mieczorek, “Effects of 8-OH-DPAT administration into the dorsal hippocampus on fear behavior and regional brain monoamines distribution in rats,” Behav. Brain Res., 120, 47–57 (2001).CrossRefPubMedGoogle Scholar
  25. 25.
    J. B. Rosen and J. Schulkin, “From normal fear to pathological anxiety,” Psychol. Rev., 105, 325–350 (1998).PubMedGoogle Scholar
  26. 26.
    A. C. Santucci, M. C. Miquel, and V. Haroutunian, “Excessive serotonin release, not depletion, leads to memory impairment in rats,” Eur. J. Pharmacol., 295, 7–17 (1996).CrossRefPubMedGoogle Scholar
  27. 27.
    S. J. Sara, “Retrieval and reconsolidation: toward a neurobiology of remembering,” Learn. Mem., 7, 73–84 (2000).PubMedGoogle Scholar
  28. 28.
    J. C. Shih, K. Chen, and M. J. Ridd, “Monoamine oxidase: from genes to behavior,” Ann. Rev. Neurosci., 22, 197–217 (1999).PubMedGoogle Scholar
  29. 29.
    N. E. Spear, J. S. Miller, and J. A. Jagielo, “Animal memory and learning,” Ann. Rev. Psychol., 41, 169–211 (1990).CrossRefGoogle Scholar
  30. 30.
    M. B. Vianna, F. G. Graeff, and P. A. Laschmann, “Kainate microinjection into the dorsal raphe nucleus induces 5-HT release in the amygdala and periaqueductal gray,” Pharmacol. Biochem. Behav., 58, 167–172 (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. I. Dubrovina
    • 1
    • 2
    • 3
  • N. K. Popova
    • 1
    • 2
    • 3
  • M. A. Gilinskii
    • 1
    • 2
    • 3
  • R. A. Tomilenko
    • 1
    • 2
    • 3
  • I. Seif
    • 1
    • 2
    • 3
  1. 1.State Science Research Institute of Physiology, Siberian DivisionRussian Academy of Medical SciencesRussia
  2. 2.Institute of Physiology and Genetics, Siberian DivisionRussian Academy of SciencesNovosibirsk
  3. 3.Centre National de la Recherche ScientifiqueInstitut CurieOrsayFrance

Personalised recommendations