Neuroscience and Behavioral Physiology

, Volume 36, Issue 3, pp 313–315 | Cite as

The Role of Defensin NP-1 in Restoring the Functions of an Injured Nerve Trunk

  • A. D. Nozdrachev
  • L. I. Kolosova
  • A. B. Moiseeva
  • O. V. Ryabchikova


This report presents results from studies on the actions of neutrophil defensin NP-1 on the initial stage of regeneration of the lesioned sciatic nerve in rats. The effects of defensin on the growth rate and functional characteristics of regenerating nerve fibers were assessed by recording total action potentials 21 days after transection and microsurgical suturing of the nerve. These experiments showed that defensin increased the rate of growth of regenerating nerve fibers by 30%: the distance over which nerve spike conductivity was restored in the lesioned nerve increased from 7.2 ± 1.2 (control) to 10.5 ± 0.8 mm (experiment) from the suturing site (p < 0.05). In addition, an increase in the excitation conduction rate along the regenerating nerve fibers by 20% compared with control was observed. Overall, the results provide evidence for the positive effects of defensin on restoration of the functions of the lesioned nerve trunk.

Key Words

regeneration sciatic nerve defensin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Kokryakov, The Biology of Antibiotics of Animal Origin [in Russian], Nauka, St. Petersburg (1999).Google Scholar
  2. 2.
    L. I. Kolosova, A. B. Moiseeva, O. V. Ryabchikova, and G. N. Akoev, “Effects of RB-101, a blocker of enkephalin-degrading enzymes, on restoration of the conductivity of the lesioned rat sciatic nerve,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 11–12, 74–78 (1997).Google Scholar
  3. 3.
    L. I. Kolosova, A. B. Moiseeva, L. N. Turchaninova, V. V. Malinin, E. L. Polyakov, A. D. Nozdrachev, and V. Kh. Khavinson, “The delayed effect of cortagen on recovery of function in lesioned nerves,” Dokl. Ros. Akad. Nauk., 384, No. 2, 271–273 (2003).Google Scholar
  4. 4.
    B. A. Kudryashov, M. V. Kondashevskaya, L. A. Lyapina, V. N. Kokryakov, Yu. A. Mazing, and O. V. Shamova, “The actions of defensin on the healing process in aseptic skin wounds and blood vessel permeability,” Byull. Eksperim. Biol. Med., 59, No. 4, 391–393 (1990).Google Scholar
  5. 5.
    G. N. Akoev, O. B. Ilyinsky, L. I. Kolosova, M. I. Titov, and O. G. Trofimova, “The effect of opioid peptide on the functional recovery of damaged neuronal structures,” in: Mechanoreceptors. Development. Structure and Functions, Plenum Press, New York, London (1989), pp. 175–180.Google Scholar
  6. 6.
    N. Borregaard, P. Elsbach, T. Ganz, P. Garred, and A. Svejgaard, “Innate immunity: from plants to humans,” Immun. Today, 21, 68–70 (2000).PubMedGoogle Scholar
  7. 7.
    J. G. Boyd and T. Gordon, “Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury,” Molec. Neurobiol., 27, No. 3, 277–324 (2003).Google Scholar
  8. 8.
    R. Chen, L. G. Cohen, and M. Hallett, “Nervous system reorganization following injury,” Neurosci., 111, No. 4, 761–773 (2003).Google Scholar
  9. 9.
    J. Donnerer, “Regeneration of primary sensory neurons,” Pharmacol., 67, 169–181 (2003).Google Scholar
  10. 10.
    M. Frye, J. Bargon, and R. Gropp, “Expression of human β-defensin-1 promotes differentiation of keratinocytes,” J. Mol. Med., 79, 275–282 (2001).CrossRefPubMedGoogle Scholar
  11. 11.
    J. L. Goldberg and B. A. Barres, “The relationship between neuronal survival and regeneration,” Ann. Rev. Neurosci., 23, 579–612 (2000).PubMedGoogle Scholar
  12. 12.
    G. H. Gudmundsson and B. Agerberth, “Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system,” J. Immunol. Meth., 232, 45–54 (1999).CrossRefGoogle Scholar
  13. 13.
    R. E. W. Hancock and G. Diamond, “The role of cationic antimicrobial peptides in innate host defences,” Trends Microbiol., 8, No. 9, 402–410 (2000).CrossRefPubMedGoogle Scholar
  14. 14.
    T. Levi-Montalcini and V. Hamberger, “Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick,” J. Exptl. Zool., 116, No. 2, 321–361 (1951).Google Scholar
  15. 15.
    A. Markus, T. D. Patel, and W. D. Snider, “Neurotrophic factors and axonal growth,” Curr. Opin. Neurobiol., 12, No. 5, 523–531 (2002).CrossRefPubMedGoogle Scholar
  16. 16.
    S. Meiners and M. L. Mercado, “Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors: strategies to improve neuronal regeneration,” Mol. Neurobiol., 27, No. 2, 177–196 (2003).PubMedGoogle Scholar
  17. 17.
    A. R. Periathamby and A. R. Dentino, “Current status of defensins and their role in innate and adaptive immunity,” FEMS Microbiol. Lett., 206, 9–18 (2002).Google Scholar
  18. 18.
    M. Salzet, “Antimicrobial peptides are signaling molecules,” Trends Immunol., 23, 283–284 (2002).CrossRefPubMedGoogle Scholar
  19. 19.
    J. Sjoberg and M. Kanje, “The initial period of peripheral nerve regeneration and the importance of the local environment for the conditioning lesion effect,” Brain Res., 530, 167–169 (1990).CrossRefPubMedGoogle Scholar
  20. 20.
    O. E. Sorensen, J. B. Cowland, K. Theilgaard-Monch, T. Ganz, and N. Borregaard, “Wound healing and expression of antimicrobial peptides in human keratinocytes, a consequence of common growth factors,” J. Immunol., 170, No. 11, 5583–5589 (2003).PubMedGoogle Scholar
  21. 21.
    S. van Wetering, S. P. G. Mannesse-Lazeroms, M. A. J. A. van Sterkenburg, and P. S. Hiemstra, “Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone,” Inflamm. Res., 51, 8–15 (2002).PubMedGoogle Scholar
  22. 22.
    D. Young, A. Biragyn, L. W. Kwak, and J. Oppenheim, “Mammalian defensins in immunity: more than just microbicidal,” Trends Immunol., 23, No. 6, 291–296 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. D. Nozdrachev
    • 1
  • L. I. Kolosova
    • 1
  • A. B. Moiseeva
    • 1
  • O. V. Ryabchikova
    • 1
  1. 1.I. P. Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations