Skip to main content
Log in

Spike Activity of Neurons in the Amygdala and Hypothalamus in Bilateral Leads in Food Motivation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Measurements of mean spike frequencies and plotting of autocorrelation histograms were performed to study the nature of the spike activity of individual neurons in the lateral hypothalamus and central nucleus of the amygdala from bilateral leads in rabbits in calm waking, after 24-h food deprivation, and after satiation. The nature of neuron spike activity changed in different ways in the hypothalamus and amygdala on transfer from hunger to satiation: 1) the mean spike frequency changed in more hypothalamic (85%) than amygdalar (56%) cells; 2) as compared with calm waking and satiation, hunger was associated with a decrease in the number of neurons with periodic discharges in the delta frequency range in the hypothalamus, while the amygdala showed an increase in periodic discharges in the beta-2 frequency range; 3) in hunger, the hypothalamus showed a decrease in the number of neurons with burst and periodic discharges, while the amygdala showed increases in the number with equiprobabilistic discharge activity. Assessed in terms of autocorrelation histogram shape, greater changes in the nature of neuron spike activity associated with changes in state occurred on the left side than on the right in both the hypothalamus and amygdala. The maximal differences in neuron spike activity on the right and left sides in the hypothalamus were seen in hunger; the greatest differences in the amygdala were seen in satiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. S. Adrianov, “Cerebral interrelationships between cognitive and emotional activity: pathways and mechanisms,” Zh. Vyssh. Nerv. Deyat., 45, No.3, 441–452 (1995).

    CAS  Google Scholar 

  2. P. G. Bogach and B. L. Ganzha, “High-frequency synchronized activity in the amygdaloid complex as an EEG measure of various psychophysiological states,” in: Questions of Hypothalamic Physiology [in Russian], University of Kiev, Kiev (1973), No. 7, pp. 3–18.

    Google Scholar 

  3. Ya. Buresh, M. Petran', and I. Zakhar, Electrophysiological Research Methods [in Russian], Izdatel'stvo Inostrannoi Literatury (Foreign Literature Press), Moscow (1962).

  4. V. A. Geodakyan, “Asynchronous asymmetry,” Zh. Vyssh. Nerv. Deyat., 43, No.3, 543–561 (1993).

    Google Scholar 

  5. R. Yu. Il'yuchenok, M. A. Gilinskii, L. V. Loskutova, N. I. Dubrovina, and N. V. Vol'f, The Amygdaloid Complex (Connections, Behavior, Memory) [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  6. A. K. Malikova and E. V. Petrova, “Thermal activity of the rabbit brain in the motivational states of hunger and thirst,” Zh. Vyssh. Nerv. Deyat., 48, No.4, 623–629 (1998).

    CAS  Google Scholar 

  7. N. G. Mikhailova and E. I. Kuliev, “Neuronal activity in hypothalamic self-stimulation zones in motivational and emotional states induced by electrical and natural stimuli,” Zh. Vyssh. Nerv. Deyat., 36, No.5, 939–946 (1986).

    CAS  Google Scholar 

  8. I. V. Pavlova, “Interaction of rabbit neocortex neurons in natural food-related motivation,” Zh. Vyssh. Nerv. Deyat., 46, No.1, 108–116 (1996).

    CAS  Google Scholar 

  9. I. V. Pavlova, “Linkage of spike activity in the right and left lateral hypothalamus in food motivation,” Zh. Vyssh. Nerv. Deyat., 51, No.4, 461–466 (2001).

    CAS  Google Scholar 

  10. I. V. Pavlova, I. V. Volkov, and V. N. Mats, “The effects of stimulation of the lateral hypothalamus on the linked spike activity of neurons in the rabbit neocortex,” Zh. Vyssh. Nerv. Deyat., 46, No.6, 1068–1074 (1996).

    CAS  Google Scholar 

  11. I. V. Pavlova and V. N. Mats, “Functional asymmetry in the lateral hypothalamus of the rabbit in food motivation,” Zh. Vyssh. Nerv. Deyat., 46, No.4, 740–744 (1996).

    CAS  Google Scholar 

  12. R. A. Pavlygina and Yu. V. Lyubimova, “Spectral characteristics of brain electrical activity in rabbits in the state of hunger,” Zh. Vyssh. Nerv. Deyat., 44, No.1, 57–64 (1994).

    CAS  Google Scholar 

  13. P. V. Simonov, The Motivated Brain [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  14. N. F. Suvorov, L. K. Danilova, S. I. Shefer, and V. T. Shuvaev, “Involvement of the amygdala in evaluating the biological significance of conditioned stimuli,” Fiziol. Zh. SSSR, 69, No.3, 304–312 (1983).

    PubMed  CAS  Google Scholar 

  15. K. V. Sudakov, B. V. Zhuravlev, A. A. Kromin, N. N. Shamaev, and L. V. Timofeeva, “Reflection of the dominant motivation in the activity of brain neurons and peripheral organs,” Usp. Fiziol. Nauk., 19, No.3, 24–44 (1988).

    PubMed  CAS  Google Scholar 

  16. I. P. Tsvetkova, The Rabbit Hypothalamus. A Stereotaxic and Cytoarchitectonic Atlas [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  17. S. A. Chepurnov and N. E. Chepurnova, The Amygdaloid Complex of the Brain [in Russian], Moscow State University Press, Moscow (1981).

    Google Scholar 

  18. V. T. Shuvaev, “The amygdalo-caudate system and behavior,” Usp. Fiziol. Nauk., 24, No.2, 84–108 (1993).

    PubMed  CAS  Google Scholar 

  19. R. E. Adamec, “Evidence that long-lasting potentiation in limbic circuits mediating defensive behaviour in the right hemisphere underlies pharmacological stressor (FG-7142) induced lasting increases in anxiety-like behaviour: role of benzodiazepine receptors,” J. Psychopharmacol., 14, No.4, 307–322 (2000).

    PubMed  CAS  Google Scholar 

  20. R. Adamec and B. Yong, “Neuroplasticity in specific limbic system circuits may mediate specific kindling induced changes in animal affect-implications for understanding anxiety associated with epilepsy,” Neurosci. Biobehav. Rev., 24, No.7, 705–723 (2000).

    PubMed  CAS  Google Scholar 

  21. R. Adolphs, D. Tranel, and H. Damasio, “Emotion recognition from faces and prosody following temporal lobectomy,” Neuropsychology, 15, No.3, 396–404 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. A. K. Anderson, D. D. Spencer, R. K. Fulbright, and E. A. Phelps, “Contribution of the anteromedial temporal lobes to the evaluation of facial emotion,” Neuropsychology, 14, No.4, 526–536 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. I. Belcheva, S. Belcheva, V. V. Petkov, and V. D. Petkov, “Asymmetry in behavioral responses to cholecystokinin microinjected into rat nucleus accumbens and amygdala,” Neuropharmacology, 33, No.8, 995–1002 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. K. Coleman-Mesches, J. A. Salinas, and J. L. McGaugh, “Unilateral amygdala inactivation after training attenuates memory for reduced reward,” Behav. Brain Res., 77, No.1–2, 175–180 (1996).

    PubMed  CAS  Google Scholar 

  25. E. Fonberg, “Amygdala functions within the alimentary system,” Acta Neurobiol. Exp., 34, 435–466 (1974).

    CAS  Google Scholar 

  26. M. Fukuda and T. Ono, “Amygdala-hypothalamic control of feeding behavior in monkey: single cell responses before and after reversible blockade of temporal cortex or amygdala projections,” Behav. Brain Res., 55, No.2, 233–241 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. E. S. Funayama, C. Grillon, M. Davis, and E. A. Phelps, “A double dissociation in the affective modulation of startle in humans: effects of unilateral temporal lobectomy,” J. Cogn. Neurosci., 13, No.6, 721–729 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. T. Furmark, H. Fischer, G. Wik, M. Larsson, and M. Fredrikson, “The amygdala and individual differences in human fear conditioning,” Neuroreport, 8, No.18, 3957–3960 (1997).

    PubMed  CAS  Google Scholar 

  29. P. Gloor, “Inputs and outputs of the amygdala-what the amygdala is trying to tell the rest of the brain,” in: Limbic Mechanisms: The Continuing Evolution of the Limbic System Concept, K. E. Livingston and O. Hornykeiarez (eds.), Plenum Press, New York (1978), pp. 189–209.

    Google Scholar 

  30. Z. Karadi, Y. Oomura, H. Nishino, T. R. Scott, L. Lenard, and S. Aou, “Responses of lateral hypothalamic glucose-sensitive and glucose-insensitive neurons to chemical stimuli in behaving rhesus monkey,” J. Neurophysiol., 67, No.2, 389–400 (1992).

    PubMed  CAS  Google Scholar 

  31. L. Lenard, Z. Karadi, B. Faludi, and I. Hernadi, “Role of forebrain glucose-monitoring neurons in the central control of feeding: I. Behavioral properties and neurotransmitter sensitivities,” Neurobiology, 3, No.3–4, 223–239 (1995).

    PubMed  CAS  Google Scholar 

  32. J. S. Morris, A. Ohman, and R. J. Dolan, “Conscious and unconscious emotional learning in the human amygdala,” Nature, 393, No.6684, 467–470 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. T. Ono, H, Nishijo, and H. Hishino, “Functional role of the limbic system and basal ganglia in motivated behaviors,” J. Neurol., 247,Suppl. 5, 23–32 (2000).

    Google Scholar 

  34. T. Ono, R. Tamura, H. Nishijo, K. Nakamura, and E. Tabuchi, “Contribution of amygdalar and lateral hypothalamic neurons to visual information processing of food and nonfood in monkey,” Physiol. Behav., 45, No.2, 411–421 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. E. T. Rools, “Memory systems in the brain,” Ann. Rev. Psychological., 51, 599–630 (2000).

    Google Scholar 

  36. F. Scneider, W. Grodd, U. Weiss, U. Klose, K. R. Mayer, T. Nagele, and R. C. Gur, “Functional MRI reveals amygdala activation during emotion,” Psychiatry Res., 76, No.2–3, 75–82 (1997).

    Google Scholar 

  37. M. H. Tabert, J. C. Borod, C. Y. Tang, G. Lange, T. C. Wei, R. Johnson, A. O. Nusbaum, and M. S. Buchsbaum, “Differential amygdala activation during emotional decision and recognition memory tasks using unpleasant words: an fMRI study,” Neuropsychologia, 39, No.6, 556–573 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. T. Zalla, E. Koechlin, P. Pietrini, G. Basso. P. Aquino, A. Sirigu, and J. Grafman, “Differential amygdala responses to winning and losing: a functional magnetic resonance imaging study in humans,” Eur. J. Neurosci., 12, No.5, 1764–1770 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 54, No. 6, pp. 776–784, November–December, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlova, I.V. Spike Activity of Neurons in the Amygdala and Hypothalamus in Bilateral Leads in Food Motivation. Neurosci Behav Physiol 36, 193–201 (2006). https://doi.org/10.1007/s11055-005-0178-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0178-y

Key words

Navigation