Skip to main content
Log in

A Functional Continuum of Regulatory Anxiety-Enhancing Peptides. The Search for Complexes Providing the Optimal Basis for Developing Inhibitory Therapeutic Agents

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Regulatory peptides are actively involved in controlling most physiological processes. One such function is regulation of the level of anxiety and panic states. We report here a meta-analysis of data published from 1960 to 2004 on the effects of anxiety-enhancing regulatory peptides. The resulting database was used to investigate the organization and functioning of the anxiogenic regulatory peptide system. Using vector representation of the effects of these peptides, the spectra of physiological effects which might be provoked by each anxiety- and fear-increasing regulatory peptide alone and in combination were evaluated. Complexes of regulatory peptides with anxiogenic profiles with the greatest potential for the further experimental development of inhibitory pharmacological agents were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. P. Ashmarin, A. E. Antipenko, V. V. Ashapkin, et al., Neurochemistry [in Russian], Institute of Biomedical Chemistry Press, Russian Academy of Medical Sciences, Moscow (1996), pp. 298–325.

    Google Scholar 

  2. I. P. Ashmarin, T. P. Storozhevich, O. P. Vakulina, and V. G. Pinelis, “Changes in systemic hemodynamics after acute administration of a diazepam binding inhibitor (DBI) and after autoimmunization against DBI,” Byull. Eksperim. Biol. Med., 115, No.5, 481–483 (1993).

    CAS  Google Scholar 

  3. S. V. Koroleva and I. P. Ashmarin, “The search for combinations of regulatory peptides decreased anxiety. Theoretical bases,” Izv. Ross. Akad. Nauk. Ser. Biol. Nauk., 1, 63–73 (2001).

    Google Scholar 

  4. S. V. Koroleva and I. P. Ashmarin, “The pathway of the functional classification of regulatory peptides. Signs of divergent and convergent evolution of regulatory peptides,” Zh. Evolyuts. Fiziol. Biokhim., 36, No.2, 154–159 (2000).

    CAS  Google Scholar 

  5. V. G. Shalyapina, V. V. Rakitskaya, and E. A. Rybnikova, “Corticotropin-releasing hormone in the integration of endocrine functions and behavior,” Usp. Fiziol. Nauk., 34, No.4, 75–92 (2003).

    CAS  Google Scholar 

  6. C. R. Abbott, M. Rossi, M. Kim, et al., “Investigation of the melanocyte stimulating hormones on food intake. Lack of evidence to support a role for the melanocortin-3 receptor,” Brain Res., 869, No.1–2, 203–210 (2000).

    PubMed  CAS  Google Scholar 

  7. E. Appenrodt, R. Schnabel, and H. Schwartzberg, “Vasopressin modulates anxiety-related behavior in rats,” Physiol. Behav., 64, No.4, 543–547 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. E. Arnauld, V. Bibene, J. Meynard, et al., “Effects of chronic icv infusion of vasopressin on sleep-waking cycle of rats,” Amer. J. Physiol., 256, No.3, Part 2, R674–R684 (1989).

    PubMed  CAS  Google Scholar 

  9. S. Auerbach and P. Lipton, “Vasopressin augments depolarisation-induced release and synthesis of serotonin in hippocampal slices,” J. Neurosci., 2, No.4, 477–482 (1982).

    PubMed  CAS  Google Scholar 

  10. E. Biro, B. Penke, and G. Telegdy, “Role of different neurotransmitter systems in the cholecystokinin octapeptide-induced anxiogenic response in rats,” Neuropeptides, 31, No.3, 281–285 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. K. T. Britton, Y. Akwa, M. G. Spina, et al., “Neuropeptide Y blocks anxiogenic-like behavioral action of corticotropin-releasing factor in an operant conflict test and elevated plus maze,” Peptides, 21, No.1, 37–44 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. H. Y. Chang and L. Kapas, “Selective activation of CCK-B receptors does not induce sleep and does not affect EEG slow-wave activity and brain temperature in rats,” Physiol. Behav., 62, No.1, 175–179 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. G. Croiset and D. De Wied, “Proconvulsive effects of vasopressin; mediation by a putative V2 receptor subtype in the central nervous system,” Brain Res., 759, No.1, 18–23 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. A. L. Curtis, L. A. Pavcovich, and R. J. Valentino, “Long-term regulation of locus ceruleus sensitivity to corticotropin-releasing factor by swim stress,” J. Pharmacol. Exptl. Ther., 289, No.3, 1211–1219 (1999).

    CAS  Google Scholar 

  15. E. Dong, K. Matsumoto, M. Tohda, and H. Watanabe, “Involvement of diazepam binding inhibitor and its fragment octadecaneuropeptide in social isolation stress-induced decrease in pentobarbital sleep in mice,” Life Sci., 64, No.19, 1779–1784 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. W. A. Dorman, G. J. Bloch, C. A. Priest, and P. E. Micevych, “Microinjection of cholecystokinin into the medial preoptic nucleus facilitates lordosis behavior in the female rat,” Physiol. Behav., 45, No.5, 969–974 (1989).

    Google Scholar 

  17. W. A. Dorman and C. W. Malsbury, “Peptidergic control of male rat sexual behavior: the effects of intracerebral injections of substance P and cholecystokinin,” Physiol. Behav., 46, No.3, 547–556 (1989).

    Google Scholar 

  18. J. C. Dunbar and H. Lu, “Proopiomelanocortin (POMC) products in the central regulation of sympathetic and cardiovascular dynamics: studies on melanocortin and opioid interactions,” Peptides, 21, No.2, 211–217 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. C. L. Ehlers, S. J. Henriksen, and M. Wang, et al., “Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats,” Brain Res., 278, No.1–2, 332–336 (1983).

    PubMed  CAS  Google Scholar 

  20. C. L. Ehlers, C. Somes, E. Seifritz, and J. E. Rivier, “CRE/NPY interactions: a potential role in sleep dysregulation in depression and anxiety,” Depress Anxiety, 6, No.1, 1–9 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. C. Ferrarese, I. Appollonio, G. Bianchi, et al., “Benzodiazepine receptors and diazepam binding inhibitor: a possible link between stress, anxiety and the immune system,” Psychoneuroendocrinol., 18, No.1, 3–22 (1993).

    CAS  Google Scholar 

  22. H. Fink, A. Rex, M. Voits, and J. P. Voigt, “Major biological actions of CCK — a critical evaluation of research findings,” Exptl. Brain Res., 123, No.1–2, 77–83 (1998).

    CAS  Google Scholar 

  23. A. J. Graw, D. M. Hills, and C. F. Spraggs, “Characterization of the receptors and mechanisms involved in the cardiovascular actions of sCCK-8 in the pithed rat,” Brit. J. Pharmacol., 115, No.4, 66–664 (1995).

    Google Scholar 

  24. M. I. Gonzalez, S. Vaziri, and C. A. Wilson, “Behavioral effects of alpha-MSH and MCH after central administration in the female rat,” Peptides, 17, No.1, 171–177 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. F. Hernando, J. A. Fuentes, B. P. Roques, and M. Ruiz-Gayo, “The CCKB receptor antagonist, L-365,260, elicits antidepressant-type effects in the forced-swim test in mice,” Eur. J. Pharmacol., 261, No.3, 257–263 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. C. D. Herzog, R. W. Stackman, and T. J. Walsh, “Intraseptal flumazenil enhances, while diazepam binding inhibitor impairs, performance in a working memory task,” Neurobiol. Learn. Mem., 66, No.3, 341–352 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. J. P. Huston, S. Schildein, P. Gerhardt, et al., “Modulation of memory, reinforcement and anxiety parameters by intra-amygdalar injection of cholecystokinin-fragments Boc-CCK-4 and CCK-8s,” Peptides, 19, No.1, 27–37 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. A. Inui, M. Okita, T. Inoue, et al., “Effect of cholecystokinin octapeptide analogues on food intake in the dog,” Amer. J. Physiol., 257, No.4, Part 2, R946–R951 (1989).

    PubMed  CAS  Google Scholar 

  29. I. Jerabek, J. P. Boulenger, J. Bradwein, et al., “CCK4-induced panic in healthy subjects. I: Psychological and cardiovascular effect,” Eur. J. Neuropsychopharmacol., 9, No.1–2, 149–155 (1999).

    CAS  Google Scholar 

  30. T. Kadar, B. Penke, K. Kovacs, and G. Telegdy, “Inhibition of feeding by the C-terminal tetrapeptide fragment of cholecystokinin in a novel environment,” Neuropeptides, 7, No.2, 97–108 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. G. Katsuura and S. Itoh, “Passive avoidance deficit following intracerebrovascular administration of cholecystokinin tetrapeptide amide in rats,” Peptides, 7, No.5, 809–814 (1986).

    Article  PubMed  CAS  Google Scholar 

  32. K. B. Kumar and K. S. Karanth, “Alpha-helical CRF blocks differential influence of corticotropin releasing factor (CRF) on appetitive and aversive memory retrieval in rats,” J. Neural Transm., 103, No.8–9, 1117–1126 (1996).

    PubMed  CAS  Google Scholar 

  33. K. B. Kumar and K. S. Karanth, “Effects of central administration of arginine-vasopressin on aversive memory retrieval,” Brain Res., 699, No.2, 293–296 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. R. Landgraft, R. Gerstberger, A. Montkowski, et al., “V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats,” J. Neurosci., 15, No.16, 4250–4258 (1995).

    Google Scholar 

  35. W. Langhans, E. Delprete, and E. Scharrer, “Mechanisms of vasopressin's anorectic effect,” Physiol. Behav., 49, No.1, 169–176 (1991).

    Article  PubMed  CAS  Google Scholar 

  36. S. J. Li, K. Varga, P. Archer, et al., “Melanocortin antagonists define two distinct pathways of cardiovascular control by alpha-and gamma-melanocyte-stimulating hormones,” J. Neurosci., 16, No.16, 5182–5188 (1996).

    PubMed  CAS  Google Scholar 

  37. G. Lievsch, C. T. Wotjak, R. Landgraf, and M. Engelmann, “Septal vasopressin modulates anxiety-related behaviour in rats,” Neurosci. Lett., 217, No.2–3, 101–104 (1996).

    Google Scholar 

  38. B. J. Meyerson, U. Hoglund, C. Johansson, et al., “Neonatal vasopressin antagonist treatment facilitates adult copulatory behavior in female rats and increases hypothalamic vasopressin content,” Brain Res., 473, No.2, 344–351 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. M. R. Opp, F. Obal, Jr., and J. M. Krueger, “Effects of alpha-MSH on sleep, behavior, and brain temperature: interactions with IL-1,” Amer. J. Physiol., 255, No.6, Part 2, R914–R922 (1988).

    PubMed  CAS  Google Scholar 

  40. B. Perras, M. Molle, J. Born, and H. L. Fehm, “Sleep and signs of attention during 3 months of intranasal vasopressin: a pilot study in two elderly subjects,” Peptides, 17, No.7, 1253–1255 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. T. Scimonelli, F. Medina, C. Wilson, and M. E. Celis, “Interaction of alpha-melanotropin (alpha-MSH) and noradrenaline in the median eminence in the control of female sexual behavior,” Peptides, 21, No.2, 219–223 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. D. J. Sirinathsinghji, “Inhibitory influence of corticotropin releasing factor on components of sexual behavior in the male rat,” Brain Res.,, 407, No.1, 185–190 (1987).

    Article  PubMed  CAS  Google Scholar 

  43. P. Sodersten, G. J. De Vries, R. M. Buijs, and P. Melin, “A daily rhythm in behavioral vasopressin sensitivity and brain vasopressin concentrations,” Neurosci. Lett., 58, No.1, 37–41 (1985).

    Article  PubMed  CAS  Google Scholar 

  44. P. Sodersten, M. Henning, P. Melin, and S. Ludin, “Vasopressin alters female sexual behaviour by acting on the brain independently of alterations in blood pressure,” Nature, 301, No.5901, 608–610, (1983).

    PubMed  CAS  Google Scholar 

  45. A. V. Vergoni, A. Bertolini, J. E. Wikberg, and H. B. Schioth, “Corticotropin-releasing factor (CRF) induced anorexia is not influenced by a melanocortin 4 receptor blockage,” Peptides, 20, No.4, 509–513 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. S. R. Weiss, R. M. Post, P. W. Gold, et al., “CRF-induced seizures and behavior: interaction with amygdala kindling,” Brain Res., 372, No.2, 345–351 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. S. Yehuda, “Effects of alpha-MSH, TRH and AVP on learning and memory, pain threshold, and motor activity: preliminary results,” Int. J. Neurosci., 32, No.3–4, 703–709 (1987).

    PubMed  CAS  Google Scholar 

  48. L. X. Zhang, Y. Zhou, Y. Du, and J. S. Han, “Effect of CCK-8 on audiogenic epileptic seizure in P77PMC rats,” Neuropeptides, 25, No.1, 73–76 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 1, 3–11, January, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koroleva, S.V., Ashmarin, I.P. A Functional Continuum of Regulatory Anxiety-Enhancing Peptides. The Search for Complexes Providing the Optimal Basis for Developing Inhibitory Therapeutic Agents. Neurosci Behav Physiol 36, 157–162 (2006). https://doi.org/10.1007/s11055-005-0174-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0174-2

Key words

Navigation