Neuroscience and Behavioral Physiology

, Volume 35, Issue 9, pp 959–967 | Cite as

Formation of Behavioral Pathology in Female C57BL/6J Mice Exposed to Prolonged Negative Psychoemotional Conditions

  • D. F. Avgustinovich
  • I. L. Kovalenko


Prolonged exposure of females to negative psychoemotional conditions by permanent keeping with aggressive males on the other side of a perforated partition in a cage with daily witnessing of intermale confrontations had negative influences on the behavior of females, assessed using a variety of ethological tests. The elevated maze test and the open field test provided evidence for the development of marked anxiety in the females, with inhibition of motor and investigative activity. Decreases in the responses of females close to the partition to familiar and unfamiliar males one month after the onset of exposure to negative psychoemotional conditions and before the end of the experiment provided evidence for a decrease in communicativeness. After two months of exposure to negative psychoemotional conditions, intermale confrontations also ceased to interest females, as shown by the partition test. The hotplate test revealed worsening of pain sensitivity in experimental females. More than half of the individuals demonstrated impairment to the cyclicity of sexual cycles with increases in the duration of diestrus. After being kept in negative psychoemotional conditions, females ceased to differentiate littermates by social status and gender, as shown by social/sexual recognition tests. All these data provide grounds for suggesting the development of an anxious-depressive state in females after being kept in negative psychoemotional conditions for prolonged periods.

Key Words

C57BL/6J mice negative psychoemotional conditions anxiety social recognition pain sensitivity communicativeness estral cycle anxious-depressive state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. F. Avgustinovich, “Anxiety in females induced by prolonged exposure to negative psychoemotional conditions,” Ros. Fiziol. Zh. im. I. M. Sechenova, 89, No.7, 858–867 (2003).Google Scholar
  2. 2.
    D. F. Avgustinovich, N. A. Lyudvina, V. V. Dolgov, and O. V. Alekseenko, “Effects of prolonged restriction stress on the behavior of female mice of the inbred strains C57BL/6J and CBA/Lac. Dispersion and cluster analysis,” Ros. Fiziol. Zh. im. I. M. Sechenova, 87, No.9, 1268–1282 (2001).Google Scholar
  3. 3.
    D. F. Avgustinovich and I. L. Kovalenko, “Prolonged individual keeping of C57BL/6J mice leads to anxiety, ” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No.3, 1268–1282 (2004).Google Scholar
  4. 4.
    E. G. Filatova and A. M. Vein, “Motivational and endocrine disturbances in depression,” Psikhiatr. Psikhofarmakoterapiya, 1 (2000).Google Scholar
  5. 5.
    S. J. Alonso, M. A. Castellano, D. Afonso, and M. Rodrigues, “Sex differences in behavioral despair: relationships between behavioral despair and open field activity,” Physiol. Behav., 49, 69–72 (1991).CrossRefPubMedGoogle Scholar
  6. 6.
    D. F. Avgustinovich, O. V. Gorbach, and N. N. Kudryavtseva, “Comparative analysis of anxiety-like behavior in the partition and plus-maze tests after agonistic interactions in mice,” Physiol. Behav., 61, No.1, 37–43 (1997).CrossRefPubMedGoogle Scholar
  7. 7.
    D. F. Avgustinovich, T. V. Lipina, N. P. Bondar, O. V. Alekseyenko, and N. N. Kudryavtseva, “Features of the genetically defined anxiety in mice,” Behav. Genet., 30, No.2, 101–109 (2000).CrossRefPubMedGoogle Scholar
  8. 8.
    A. W. Bannon, J. Seda, M. Carmouche, J. M. Francis, M. H. Norman, B. Karbon, and M. L. McCaleb, “ Behavioral characterization of neuropeptide Y knockout mice,” Brain Res., 868, 79–87 (2000).CrossRefPubMedGoogle Scholar
  9. 9.
    H. M. T. Barros and M. Ferigolo, “Ethopharmacology of imipramine in the forced-swimming test: gender differences,” Neurosci. Biobehav. Rev., 23, 279–286 (1998).CrossRefPubMedGoogle Scholar
  10. 10.
    A. Bartolomucci, T. Pederzani, P. Sacerdote, A. E. Panerai, S. Parmigiani, and P. Palanza, “Behavioral and physiological characterization of male mice under chronic psychosocial stress,” Psychoneuroendocrinol., 29, 899–910 (2004).CrossRefGoogle Scholar
  11. 11.
    R. J. Blanchard, C. R. McKittrick, and D. C. Blanchard, “Animal models of social stress: effects on behavior and brain neurochemical system,” Physiol. Behav., 73, 261–271 (2001).CrossRefPubMedGoogle Scholar
  12. 12.
    K. Bjorqvist, “Social defeats as a stressor in humans,” Physiol. Behav., 73, 435–442 (2001).CrossRefPubMedGoogle Scholar
  13. 13.
    M. Bourin, E. Mocaer, and R. Porsholt, “Antidepressant-like activity of S 10098 (agomelantine) in the forced swimming test in rodents: involvement of melatonin and serotonin receptors,” J. Psychiatry Neurosci., 29, No.2, 126–133 (2004).PubMedGoogle Scholar
  14. 14.
    L. A. Brotto, A. M. Barr, and B. B. Gorzalka, “Sex differences in forced-swim and open-field test behaviors after chronic administration of melatonin,” Eur. J. Pharmacol., 402, 87–93 (2000).CrossRefPubMedGoogle Scholar
  15. 15.
    E. Choleris, M. Kavaliers, and D. W. Pfaff, “Functional genomics of social recognition,” J. Neuroendocrinol., 16, 383–389 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    A. Dalvi and I. Lucki, “Murine models of depression,” Psychopharmacol., 147, 14–16 (1999).CrossRefGoogle Scholar
  17. 17.
    F. Earls, “Sex differences in psychiatric disorders: origins and developmental influences,” Psychiatr. Dev., 5, 1–23 (1987).PubMedGoogle Scholar
  18. 18.
    M. Kavaliers, D. D. Colwell, W. J. Braun, and E. Choleris, “Brief exposure to the odour of a parasitized male alters the subsequent mate odour responses of female mice,” Anim. Behav., 65, 59–86 (2003).CrossRefGoogle Scholar
  19. 19.
    A. J. Keeney and S. Hogg, “Behavioural consequences of repeated social defeat in the mouse: evolutionary evaluation of potential animal model of depression,” Behav. Pharmacol., 10, 753–764 (1999).PubMedGoogle Scholar
  20. 20.
    G. A. Kennett, F. Chaouloff, M. Marcou, and G. Curzon, “Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin,” Brain Res., 382, 416–421 (1986).CrossRefPubMedGoogle Scholar
  21. 21.
    J. W. Kim and B. Kirkpatrick, “Social isolation in animal models of relevance to neuropsychiatric disorders,” Biol. Psychiatr., 40, 918–922 (1996).CrossRefGoogle Scholar
  22. 22.
    S. M. Korte, “Corticosteroids in relation to fear, anxiety and psychopathology,” Neurosci. Biobehav. Rev., 25, 117–142 (2001).CrossRefPubMedGoogle Scholar
  23. 23.
    N. N. Kudryavtseva and D. F. Avgustinovich, “Behavioral and physiological markers of experimental depression induced by social conflicts (DISC),” Aggress. Behav., 24, No.4, 271–286 (1998).CrossRefGoogle Scholar
  24. 24.
    N. N. Kudryavtseva, I. V. Bakshtanovskaya, and L. A. Koryakin, “Social model of depression in mice of C57BL/6J strain,” Pharmacol. Biochem. Behav., 38, No.2, 315–320 (1991).CrossRefPubMedGoogle Scholar
  25. 25.
    R. Lister, “The use of a plus-maze to measure anxiety in the mouse,” Psychopharmacol., 92, 180–195 (1987).Google Scholar
  26. 26.
    D. H. Overstreet, O. Pucilowski, M. C. Retton, P. Delagrange, and B. Guardiola-Lemaitre, “Effects of melatonin receptor ligands on swim test immobility,” 9, 249–253 (1998).Google Scholar
  27. 27.
    P. Palanza, L. Gioisa, and S. Parmigiani, “Social stress in mice: gender differences and effects of estrous cycle and social dominance,” Physiol Behav., 73, 411–420 (2001).CrossRefPubMedGoogle Scholar
  28. 28.
    R. D. Porsholt, G. Anton, N. Blaver, and M. Jalfre, “Behavioural despair in rats: a new model sensitive to antidepressant treatment,” Eur. J. Pharmacol., 47, 379–391 (1978).CrossRefPubMedGoogle Scholar
  29. 29.
    R. D. Porsholt, A. Bertin, and M. Jalfre, “Behavioral despair in mice: A Primary screening test for antidepressants,” Arch. Int. Pharmacodynamics, 229, 327–336 (1977).Google Scholar
  30. 30.
    A. Ramos and P. Mormede, “Stress and emotionality: a multidimensional and genetic approach,” Neurosci. Biobehav. Rev., 22, No.1, 33–57 (1998).CrossRefPubMedGoogle Scholar
  31. 31.
    R. J. Rogers and C. Cole, “The elevated plus-maze: pharmacology, methodology and ethology,” in: Ethology and Psychopharmacology, S. J. Cooper and C. A. Hendrie (eds.), John Wiley & Sons Ltd., Chichester (1994), pp. 9–44.Google Scholar
  32. 32.
    K. Yu. Sarkisova, I. S. Midzianovskaia, and M. A. Kulikov, “Depressive-like behavioral alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy,” Behav. Brain Res., 144, 211–226 (2003).CrossRefPubMedGoogle Scholar
  33. 33.
    T. J. Shors and B. Leuner, “Estrogen-mediated effects on depression and memory formation in females, ” J. Affect. Disord., 74, 85–96 (2003).CrossRefPubMedGoogle Scholar
  34. 34.
    W. E. Sternberg and J. F. Mogil, “Genetic and hormonal basis of pain states,” Best Pract. Res. Clinic. Anaesthesiol., 15, No.2, 229–245 (2001).CrossRefGoogle Scholar
  35. 35.
    L. K. Takahashi, “Role of CRF(1) and CRF(2) receptors in fear and anxiety,” Neurosci. Biobehav. Rev., 25, 627–636 (2001).CrossRefPubMedGoogle Scholar
  36. 36.
    T. Uz and H. Manev, “Prolonged swim-test immobility of serotonin N-acetyltransferase (AANAT)-mutant mice,” J. Pineal Res., 30, No.3, 166–170 (2001).CrossRefPubMedGoogle Scholar
  37. 37.
    J. M. Weiss, P. A. Goodman, B. G. Losito, S. Corrigans, J. M. Charry, and W. H. Bailey, “Behavioral depression produced by an uncontrollable stressor: relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain,” Brain Res. Rev., 3, 167–205 (1981).CrossRefGoogle Scholar
  38. 38.
    G. Yadid, R. Nakash, I. Deri, N. Kinor, I. Gispan, and A. Zangen, “Elucidation of the neurobiology of depression: insights from a novel genetic animal model,” Progr. Neurobiol., 62, 353–378 (2000).CrossRefPubMedGoogle Scholar
  39. 39.
    G. Yates, J. Panksepp, S. Ikemoto, E. Nelson, and R. Conner, “Social isolation effects on the ‘behavioral despair’ forced swimming test: effect of age and duration of testing,” Physiol. Behav., 49, 347–353 (1991).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • D. F. Avgustinovich
    • 1
  • I. L. Kovalenko
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations