Advertisement

Neuroscience and Behavioral Physiology

, Volume 35, Issue 8, pp 845–853 | Cite as

Some Problems in the Measurement of the Frequency-Resolving Ability of Hearing

  • A. Ya. Supin
Article
  • 37 Downloads

Abstract

Despite the detailed development of masking methods for measurement of the frequency selectivity of hearing, these measurements are hardly used for diagnostic purposes because they are time-consuming and because of the uncertain extrapolation of the results to the perception of complex spectral patterns. A method for the direct measurement of the spectral resolving ability of hearing using test signals with rippled spectra is proposed. These measurements showed 1) that the resolving ability of the auditory system in terms of discriminating complex spectra is greater than that suggested by the acuity of auditory frequency filters; 2) that changes in the acuity of frequency auditory filters associated with sound intensity hardly affect the ability to resolve complex spectra; 3) that the effects of interference on frequency-resolving ability do not lead to decreases in the spectral contrast of signals due to superimposition of noise.

Key Words

hearing psychoacoustics frequency selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. V. Popov and A. Ya. Supin, “Quantitative measurements of the frequency-resolving ability of human hearing,” Dokl. Akad. Nauk SSSR, 278, 1012–1016 (1984).PubMedGoogle Scholar
  2. 2.
    A. Ya. Supin and V. V. Popov, “The frequency-resolving ability of human hearing,” Fiziol. Cheloveka, 13, 28–34 (1987).PubMedGoogle Scholar
  3. 3.
    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “The sensitivity of hearing to contrast in the spectral pattern of a sound,” Dokl. Ros. Akad. Nauk., 365, 571–573 (1999).Google Scholar
  4. 4.
    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “The effects of sound intensity on the frequency-resolving ability of hearing and the effects of interference,” Dokl. Ros. Akad. Nauk., 383, 134–137 (2002).Google Scholar
  5. 5.
    L. A. Chistovich, “Frequency characteristics of the masking effect,” Biofizika, 2, 743–755 (1957).Google Scholar
  6. 6.
    T. Baer and B. C. J. Moore, “Effect of spectral smearing on the intelligibility of sentences in the presence of interfering speech,” J. Acoust. Soc. Amer., 95, 2277–2280 (1994).Google Scholar
  7. 7.
    F. A. Bilsen and J. L. Wieman, “Atonal periodicity sensation for comb filtered noise signals,” in: Psychophysiological and Behavioral Studies in Hearing, G. Van der Brink and F. A. Bilsen (eds.), Delft University Press, Delft (1980), pp. 379–382.Google Scholar
  8. 8.
    B. Delgutte, “Physiological mechanisms of psychophysical masking: Observations from auditory-nerve fibers,” J. Acoust. Soc. Amer., 87, 791–809 (1990).Google Scholar
  9. 9.
    W. A. Dreschler and R. Plomp, “Relation between psychophysical data and speech perception for hearing impaired subjects,” J. Acoust. Soc. Amer., 68, 1608–1615 (1980).Google Scholar
  10. 10.
    J. R. Dubno and J. B. Alstrom, “Psychophysical suppression measured with bandlimited noise extended below and/or above the signal: Effects of age and hearing loss,” J. Acoust. Soc. Amer., 110, 1058–1066 (2001).CrossRefGoogle Scholar
  11. 11.
    N. I. Durlach, D. L. Braida, and Y. Ito, “Towards a model for discrimination of broadband signals,” J. Acoust. Soc. Amer., 80, 63–72 (1986).Google Scholar
  12. 12.
    E. F. Evans, “Auditory processing of complex sounds: an overview,” Phil. Trans. Roy. Soc. Lond., B336, 296–406 (1992).Google Scholar
  13. 13.
    J. M. Festen and R. Plomp, “Relations between auditory functions in impaired hearing,” J. Acoust. Soc. Amer., 73, 652–662 (1983).Google Scholar
  14. 14.
    H. Fletcher, “Auditory patterns,” Rev. Mod. Phys., 12, 47–65 (1940).CrossRefGoogle Scholar
  15. 15.
    R. H. Gifford and S. P. Bacon, “Contributions of suppression and excitation to simultaneous masking: Effects of signal frequency and masker-signal frequency relation,” J. Acoust. Soc. Amer., 107, 2188–2200 (2000).CrossRefGoogle Scholar
  16. 16.
    B. R. Glasberg and B. C. J. Moore, “Derivation of auditory filter shapes from notched-noise data,” Hearing Res., 47, 103–138 (1990).CrossRefGoogle Scholar
  17. 17.
    B. R. Glasberg and B. C. J. Moore, “Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise,” J. Acoust. Soc. Amer., 108, 2318–2328 (2000).CrossRefGoogle Scholar
  18. 18.
    B. R. Glasberg, B. C. J. Moore, and I. Nimmo-Smith, “Comparison of auditory filter shapes derived with three different maskers,” J. Acoust. Soc. Amer., 75, 536–544 (1984).Google Scholar
  19. 19.
    M. P. Gorga and P. J. Abbas, “Forward-masking AP tuning curves in normal and in acoustically traumatized cats,” J. Acoust. Soc. Amer., 70, 1322–1330 (1981).Google Scholar
  20. 20.
    D. M. Green, “Profile analysis: A different view of auditory intensity discrimination,” Amer. Psychological., 38, 133–142 (1983).CrossRefGoogle Scholar
  21. 21.
    D. M. Green, “‘Frequency’ and the detection of spectral shape change,” in: Auditory Frequency Selectivity, B. C. J. Moore and R. D. Paterson (eds.), Plenum Press, New York (1986), pp. 351–358.Google Scholar
  22. 22.
    D. M. Green, “Profile analysis,” in: Auditory Intensity Discrimination, Oxford University Press, New York (1987).Google Scholar
  23. 23.
    D. M. Green, Profile Analysis Auditory Intensity Discrimination, Oxford Psychology Series, No. 13, Oxford University Press, London (1988).Google Scholar
  24. 24.
    D. M. Green, “On the number of components in profile-analysis tasks,” J. Acoust. Soc. Amer., 91, 1616–1623 (1992).Google Scholar
  25. 25.
    D. M. Green, C. R. Mason, and G. Kidd, Jr., “Profile analysis: Critical band and duration,” J. Acoust. Soc. Amer., 75, 1163–1167 (1984).Google Scholar
  26. 26.
    D. M. Green, Z. A. Onsan, and T. G. Forrest, “Frequency effects in profile analysis,” J. Acoust. Soc. Amer., 81, 692–699 (1987).Google Scholar
  27. 27.
    T. Houtgast, “Psychophysical evidence for lateral inhibition in hearing,” J. Acoust. Soc. Amer., 51, 1885–1894 (1972).Google Scholar
  28. 28.
    T. Houtgast, “Making patterns and lateral inhibition,” in: Facts and Models in Hearing, E. Zwicker and R. Terhardt (eds.), Springer, Berlin (1974), pp. 258–265.Google Scholar
  29. 29.
    T. Houtgast, “Auditory-filter characteristics derived from direct-masking data and pulsation-threshold data with a rippled-noise masker,” J. Acoust. Soc. Amer., 62, 409–415 (1977).Google Scholar
  30. 30.
    P. A. Howard-Jones and I. R. Summers, “Temporal features in spectrally degraded speech,” Acoustic Lett., 15, 159–163 (1992).Google Scholar
  31. 31.
    D. Johnson-Davies and R. D. Patterson, “Psychophysical tuning curves: Restricting the listening band to the signal region,” J. Acoust. Soc. Amer., 65, 675–770 (1979).Google Scholar
  32. 32.
    C. Kaernbach and L. Demany, “Psychophysical evidence against the autocorrelation theory of auditory temporal processing,” J. Acoust. Soc. Amer., 104, 2298–2306 (1998).CrossRefGoogle Scholar
  33. 33.
    K. Krumbholz, R. D. Patterson, and A. Nobbe, “Asymmetry of masking between noise and iterated rippled noise: Evidence for time-interval processing in the auditory system,” J. Acoust. Soc. Amer., 110, 2096–2107 (2001).CrossRefGoogle Scholar
  34. 34.
    B. C. J. Moore, J. I. Alcantara, and T. Dau, “Masking patterns for sinusoidal and narrow-band noise maskers,” J. Acoust. Soc. Amer., 104, 1023–1038 (1998).CrossRefGoogle Scholar
  35. 35.
    B. C. J. Moore and B. R. Glasberg, “Auditory filter shapes derived in simultaneous and forward masking,” J. Acoust. Soc. Amer., 71, 942–945 (1981).Google Scholar
  36. 36.
    B. C. J. Moore and B. R. Glasberg, “Suggested formulae for calculating auditory-filter bandwidths and excitation patterns,” J. Acoust. Soc. Amer., 74, 750–753 (1983).Google Scholar
  37. 37.
    B. C. J. Moore and B. R. Glasberg, “Formulae described frequency selectivity as a function of frequency and level and their use in calculating excitation patterns,” Hearing Res., 28, 209–225 (1987).CrossRefGoogle Scholar
  38. 38.
    B. C. J. Moore and D. A. Vickers, “The role of spread of excitation and suppression in simultaneous masking,” J. Acoust. Soc. Amer., 102, 2284–2290 (1997).CrossRefGoogle Scholar
  39. 39.
    B. J. O’Loughlin and B. C. J. Moore, “Off-frequency listening: Effects on psychoacoustical tuning curves obtained in simultaneous and forward masking,” J. Acoust. Soc. Amer., 69, 1119–1125 (1981).Google Scholar
  40. 40.
    A. J. Oxenham and C. J. Plack, “Suppression and the upward spread of masking,” J. Acoust. Soc. Amer., 104, 3500–3510 (1998).CrossRefGoogle Scholar
  41. 41.
    R. D. Patterson, “Auditory filter shapes derived with noise stimuli,” J. Acoust. Soc. Amer., 59, 640–654 (1976).Google Scholar
  42. 42.
    R. D. Patterson, S. Handel, W. A. Yost, and A. J. Datta, “The relative strength of the tone and noise components in iterated rippled noise,” J. Acoust. Soc. Amer., 100, 3286–3294 (1996).Google Scholar
  43. 43.
    R. D. Patterson and G. B. Henning, “Stimulus variability and auditory filter shape,” J. Acoust. Soc. Amer., 62, 649–664 (1977).Google Scholar
  44. 44.
    R. D. Patterson and B. C. J. Moore, “Auditory filters and excitation patterns as representations of frequency resolution,” in: Frequency Selectivity in Hearing, B. C. J. Moore (ed.), Academic Press, London (1986).Google Scholar
  45. 45.
    R. D. Patterson and I. Nimmo-Smith, “Off-frequency listening and auditory filter asymmetry,” J. Acoust. Soc. Amer., 67, 229–245 (1980).Google Scholar
  46. 46.
    R. D. Patterson, I. Minno-Smith, D. L. Weber, and R. Milory, “The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold,” J. Acoust. Soc. Amer., 72, 1788–1803 (1982).Google Scholar
  47. 47.
    G. F. Pick, “Level dependence of psychophysical frequency resolution and auditory filter shape,” J. Acoust. Soc. Amer., 68, 1085–1095 (1980).Google Scholar
  48. 48.
    G. Pick, E. F. Evans, and J. P. Wilson, “Frequency resolution in patients with hearing loss of cochlear origin,” in: Psychophysics and Physiology of Hearing, E. F. Evans and J. P. Wilson (eds.), Academic Press, London (1977), pp. 273–281.Google Scholar
  49. 49.
    S. Rosen, R. J. Baker, and A. Darling, “Auditory filter non-linearity at 2 kHz in normal hearing listeners,” J. Acoust. Soc. Amer., 103, 2539–2550 (1998).CrossRefGoogle Scholar
  50. 50.
    S. A. Shamma, N. Kowalski, and H. Versnel, “Ripple analysis in the ferret primary auditory cortex. III. Topographic distribution of ripple response parameters,” J. Auditory Neurosci., 1, 271–278 (1995).Google Scholar
  51. 51.
    S. A. Shamma and H. Versnel, “Ripple analysis in the ferret primary auditory cortex. II. Prediction of unit responses to auditory spectral profiles,” J. Auditory Neurosci., 1, 255–271 (1995).Google Scholar
  52. 52.
    S. A. Shamma, H. Versnel, and N. Kowalski, “Ripple analysis in the ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally rippled spectra,” J. Auditory Neurosci., 1, 233–255 (1995).Google Scholar
  53. 53.
    A. M. Small, “Pure-tone masking,” J. Acoust. Soc. Amer., 31, 1619–1625 (1959).Google Scholar
  54. 54.
    P. G. Stelmachowizc, W. Jesteadt, M. P. Gorga, and J. Mott, “Speech perception ability and psychophysical tuning curves in hearing-impaired listeners,” J. Acoust. Soc. Amer., 77, 621–627 (1985).Google Scholar
  55. 55.
    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Frequency resolving power measured by rippled noise,” Hearing Res., 78, 31–40 (1994).CrossRefGoogle Scholar
  56. 56.
    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Ripple density resolution for various rippled-noise patterns,” J. Acoust. Soc. Amer., 103, 2042–2050 (1998).CrossRefGoogle Scholar
  57. 57.
    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Ripple depth and density resolution in rippled noise,” J. Acoust. Soc. Amer., 106, 2800–2804 (1999).CrossRefGoogle Scholar
  58. 58.
    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “The effect of masking noise on rippled-spectrum resolution,” Hearing Res., 151, 157–166 (2001).CrossRefGoogle Scholar
  59. 59.
    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Rippled-spectrum resolution dependence on level,” Hearing Res., 185, 1–12 (2003).CrossRefGoogle Scholar
  60. 60.
    M. Ter Keurs, J. M. Festen, and R. Plomp, “Effect of spectral envelope smearing on speech reception. I,” J. Acoust. Soc. Amer., 91, 2872–2880 (1992).Google Scholar
  61. 61.
    M. Ter Keurs, J. M. Festen, and R. Plomp, “Effect of spectral envelope smearing on speech reception. II,” 93, 1547–1552 (1993).Google Scholar
  62. 62.
    R. S. Tyler, “Measuring hearing loss in the future,” Brit. J. Audiol., 13, 29–40 (1979).Google Scholar
  63. 63.
    H. Versnel, N. Kowalski, and S. A. Shamma, “Ripple analysis in ferret primary auditory cortex. III. Topographic distribution of ripple response parameters,” Aud. Neurosci., 1, 271–286 (1995).Google Scholar
  64. 64.
    W. A. Yost, “The dominance region and ripple-noise pitch: A test of the peripheral weighting model,” J. Acoust. Soc. Amer., 72, 416–425 (1982).Google Scholar
  65. 65.
    W. A. Yost, “Pitch of iterated rippled nose,” J. Acoust. Soc. Amer., 100, 511–518 (1996).Google Scholar
  66. 66.
    W. A. Yost, “Pitch strength of iterated rippled noise,” J. Acoust. Soc. Amer., 100, 3329–3335 (1996).Google Scholar
  67. 67.
    W. A. Yost and R. Hill, “Models of the pitch and pitch strength of ripple noise,” J. Acoust. Soc. Amer., 66, 400–410 (1979).Google Scholar
  68. 68.
    W. A. Yost, R. Hill, and T. Perez-Falcon, “Pitch discrimination of ripple noise,” J. Acoust. Soc. Amer., 63, 1166–1173 (1977).Google Scholar
  69. 69.
    W. A. Yost, R. D. Patterson, and S. Sheft, “A time domain description for the pitch strength of iterated rippled noise,” J. Acoust. Soc. Amer., 99, 1066–1078 (1996).Google Scholar
  70. 70.
    F. Zwicker, “On a psychoacoustical equivalent of tuning curves,” in: Facts and Models in Hearing, E. Zwicker and E. Terhardt (eds.), Springer, Berlin (1974), pp. 132–141.Google Scholar
  71. 71.
    E. Zwicker and E. Terhardt, “Analytical expression for critical-band rate and critical bandwidth as a function of frequency,” J. Acoust. Soc. Amer., 68, 1523–1525 (1980).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Ya. Supin
    • 1
  1. 1.Institute of Problems in Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations