Skip to main content
Log in

Some Problems in the Measurement of the Frequency-Resolving Ability of Hearing

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Despite the detailed development of masking methods for measurement of the frequency selectivity of hearing, these measurements are hardly used for diagnostic purposes because they are time-consuming and because of the uncertain extrapolation of the results to the perception of complex spectral patterns. A method for the direct measurement of the spectral resolving ability of hearing using test signals with rippled spectra is proposed. These measurements showed 1) that the resolving ability of the auditory system in terms of discriminating complex spectra is greater than that suggested by the acuity of auditory frequency filters; 2) that changes in the acuity of frequency auditory filters associated with sound intensity hardly affect the ability to resolve complex spectra; 3) that the effects of interference on frequency-resolving ability do not lead to decreases in the spectral contrast of signals due to superimposition of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. V. Popov and A. Ya. Supin, “Quantitative measurements of the frequency-resolving ability of human hearing,” Dokl. Akad. Nauk SSSR, 278, 1012–1016 (1984).

    PubMed  Google Scholar 

  2. A. Ya. Supin and V. V. Popov, “The frequency-resolving ability of human hearing,” Fiziol. Cheloveka, 13, 28–34 (1987).

    PubMed  Google Scholar 

  3. A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “The sensitivity of hearing to contrast in the spectral pattern of a sound,” Dokl. Ros. Akad. Nauk., 365, 571–573 (1999).

    Google Scholar 

  4. A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “The effects of sound intensity on the frequency-resolving ability of hearing and the effects of interference,” Dokl. Ros. Akad. Nauk., 383, 134–137 (2002).

    Google Scholar 

  5. L. A. Chistovich, “Frequency characteristics of the masking effect,” Biofizika, 2, 743–755 (1957).

    Google Scholar 

  6. T. Baer and B. C. J. Moore, “Effect of spectral smearing on the intelligibility of sentences in the presence of interfering speech,” J. Acoust. Soc. Amer., 95, 2277–2280 (1994).

    Google Scholar 

  7. F. A. Bilsen and J. L. Wieman, “Atonal periodicity sensation for comb filtered noise signals,” in: Psychophysiological and Behavioral Studies in Hearing, G. Van der Brink and F. A. Bilsen (eds.), Delft University Press, Delft (1980), pp. 379–382.

    Google Scholar 

  8. B. Delgutte, “Physiological mechanisms of psychophysical masking: Observations from auditory-nerve fibers,” J. Acoust. Soc. Amer., 87, 791–809 (1990).

    Google Scholar 

  9. W. A. Dreschler and R. Plomp, “Relation between psychophysical data and speech perception for hearing impaired subjects,” J. Acoust. Soc. Amer., 68, 1608–1615 (1980).

    Google Scholar 

  10. J. R. Dubno and J. B. Alstrom, “Psychophysical suppression measured with bandlimited noise extended below and/or above the signal: Effects of age and hearing loss,” J. Acoust. Soc. Amer., 110, 1058–1066 (2001).

    Article  Google Scholar 

  11. N. I. Durlach, D. L. Braida, and Y. Ito, “Towards a model for discrimination of broadband signals,” J. Acoust. Soc. Amer., 80, 63–72 (1986).

    Google Scholar 

  12. E. F. Evans, “Auditory processing of complex sounds: an overview,” Phil. Trans. Roy. Soc. Lond., B336, 296–406 (1992).

    Google Scholar 

  13. J. M. Festen and R. Plomp, “Relations between auditory functions in impaired hearing,” J. Acoust. Soc. Amer., 73, 652–662 (1983).

    Google Scholar 

  14. H. Fletcher, “Auditory patterns,” Rev. Mod. Phys., 12, 47–65 (1940).

    Article  Google Scholar 

  15. R. H. Gifford and S. P. Bacon, “Contributions of suppression and excitation to simultaneous masking: Effects of signal frequency and masker-signal frequency relation,” J. Acoust. Soc. Amer., 107, 2188–2200 (2000).

    Article  Google Scholar 

  16. B. R. Glasberg and B. C. J. Moore, “Derivation of auditory filter shapes from notched-noise data,” Hearing Res., 47, 103–138 (1990).

    Article  Google Scholar 

  17. B. R. Glasberg and B. C. J. Moore, “Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise,” J. Acoust. Soc. Amer., 108, 2318–2328 (2000).

    Article  Google Scholar 

  18. B. R. Glasberg, B. C. J. Moore, and I. Nimmo-Smith, “Comparison of auditory filter shapes derived with three different maskers,” J. Acoust. Soc. Amer., 75, 536–544 (1984).

    Google Scholar 

  19. M. P. Gorga and P. J. Abbas, “Forward-masking AP tuning curves in normal and in acoustically traumatized cats,” J. Acoust. Soc. Amer., 70, 1322–1330 (1981).

    Google Scholar 

  20. D. M. Green, “Profile analysis: A different view of auditory intensity discrimination,” Amer. Psychological., 38, 133–142 (1983).

    Article  Google Scholar 

  21. D. M. Green, “‘Frequency’ and the detection of spectral shape change,” in: Auditory Frequency Selectivity, B. C. J. Moore and R. D. Paterson (eds.), Plenum Press, New York (1986), pp. 351–358.

    Google Scholar 

  22. D. M. Green, “Profile analysis,” in: Auditory Intensity Discrimination, Oxford University Press, New York (1987).

    Google Scholar 

  23. D. M. Green, Profile Analysis Auditory Intensity Discrimination, Oxford Psychology Series, No. 13, Oxford University Press, London (1988).

    Google Scholar 

  24. D. M. Green, “On the number of components in profile-analysis tasks,” J. Acoust. Soc. Amer., 91, 1616–1623 (1992).

    Google Scholar 

  25. D. M. Green, C. R. Mason, and G. Kidd, Jr., “Profile analysis: Critical band and duration,” J. Acoust. Soc. Amer., 75, 1163–1167 (1984).

    Google Scholar 

  26. D. M. Green, Z. A. Onsan, and T. G. Forrest, “Frequency effects in profile analysis,” J. Acoust. Soc. Amer., 81, 692–699 (1987).

    Google Scholar 

  27. T. Houtgast, “Psychophysical evidence for lateral inhibition in hearing,” J. Acoust. Soc. Amer., 51, 1885–1894 (1972).

    Google Scholar 

  28. T. Houtgast, “Making patterns and lateral inhibition,” in: Facts and Models in Hearing, E. Zwicker and R. Terhardt (eds.), Springer, Berlin (1974), pp. 258–265.

    Google Scholar 

  29. T. Houtgast, “Auditory-filter characteristics derived from direct-masking data and pulsation-threshold data with a rippled-noise masker,” J. Acoust. Soc. Amer., 62, 409–415 (1977).

    Google Scholar 

  30. P. A. Howard-Jones and I. R. Summers, “Temporal features in spectrally degraded speech,” Acoustic Lett., 15, 159–163 (1992).

    Google Scholar 

  31. D. Johnson-Davies and R. D. Patterson, “Psychophysical tuning curves: Restricting the listening band to the signal region,” J. Acoust. Soc. Amer., 65, 675–770 (1979).

    Google Scholar 

  32. C. Kaernbach and L. Demany, “Psychophysical evidence against the autocorrelation theory of auditory temporal processing,” J. Acoust. Soc. Amer., 104, 2298–2306 (1998).

    Article  Google Scholar 

  33. K. Krumbholz, R. D. Patterson, and A. Nobbe, “Asymmetry of masking between noise and iterated rippled noise: Evidence for time-interval processing in the auditory system,” J. Acoust. Soc. Amer., 110, 2096–2107 (2001).

    Article  Google Scholar 

  34. B. C. J. Moore, J. I. Alcantara, and T. Dau, “Masking patterns for sinusoidal and narrow-band noise maskers,” J. Acoust. Soc. Amer., 104, 1023–1038 (1998).

    Article  Google Scholar 

  35. B. C. J. Moore and B. R. Glasberg, “Auditory filter shapes derived in simultaneous and forward masking,” J. Acoust. Soc. Amer., 71, 942–945 (1981).

    Google Scholar 

  36. B. C. J. Moore and B. R. Glasberg, “Suggested formulae for calculating auditory-filter bandwidths and excitation patterns,” J. Acoust. Soc. Amer., 74, 750–753 (1983).

    Google Scholar 

  37. B. C. J. Moore and B. R. Glasberg, “Formulae described frequency selectivity as a function of frequency and level and their use in calculating excitation patterns,” Hearing Res., 28, 209–225 (1987).

    Article  Google Scholar 

  38. B. C. J. Moore and D. A. Vickers, “The role of spread of excitation and suppression in simultaneous masking,” J. Acoust. Soc. Amer., 102, 2284–2290 (1997).

    Article  Google Scholar 

  39. B. J. O’Loughlin and B. C. J. Moore, “Off-frequency listening: Effects on psychoacoustical tuning curves obtained in simultaneous and forward masking,” J. Acoust. Soc. Amer., 69, 1119–1125 (1981).

    Google Scholar 

  40. A. J. Oxenham and C. J. Plack, “Suppression and the upward spread of masking,” J. Acoust. Soc. Amer., 104, 3500–3510 (1998).

    Article  Google Scholar 

  41. R. D. Patterson, “Auditory filter shapes derived with noise stimuli,” J. Acoust. Soc. Amer., 59, 640–654 (1976).

    Google Scholar 

  42. R. D. Patterson, S. Handel, W. A. Yost, and A. J. Datta, “The relative strength of the tone and noise components in iterated rippled noise,” J. Acoust. Soc. Amer., 100, 3286–3294 (1996).

    Google Scholar 

  43. R. D. Patterson and G. B. Henning, “Stimulus variability and auditory filter shape,” J. Acoust. Soc. Amer., 62, 649–664 (1977).

    Google Scholar 

  44. R. D. Patterson and B. C. J. Moore, “Auditory filters and excitation patterns as representations of frequency resolution,” in: Frequency Selectivity in Hearing, B. C. J. Moore (ed.), Academic Press, London (1986).

    Google Scholar 

  45. R. D. Patterson and I. Nimmo-Smith, “Off-frequency listening and auditory filter asymmetry,” J. Acoust. Soc. Amer., 67, 229–245 (1980).

    Google Scholar 

  46. R. D. Patterson, I. Minno-Smith, D. L. Weber, and R. Milory, “The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold,” J. Acoust. Soc. Amer., 72, 1788–1803 (1982).

    Google Scholar 

  47. G. F. Pick, “Level dependence of psychophysical frequency resolution and auditory filter shape,” J. Acoust. Soc. Amer., 68, 1085–1095 (1980).

    Google Scholar 

  48. G. Pick, E. F. Evans, and J. P. Wilson, “Frequency resolution in patients with hearing loss of cochlear origin,” in: Psychophysics and Physiology of Hearing, E. F. Evans and J. P. Wilson (eds.), Academic Press, London (1977), pp. 273–281.

    Google Scholar 

  49. S. Rosen, R. J. Baker, and A. Darling, “Auditory filter non-linearity at 2 kHz in normal hearing listeners,” J. Acoust. Soc. Amer., 103, 2539–2550 (1998).

    Article  Google Scholar 

  50. S. A. Shamma, N. Kowalski, and H. Versnel, “Ripple analysis in the ferret primary auditory cortex. III. Topographic distribution of ripple response parameters,” J. Auditory Neurosci., 1, 271–278 (1995).

    Google Scholar 

  51. S. A. Shamma and H. Versnel, “Ripple analysis in the ferret primary auditory cortex. II. Prediction of unit responses to auditory spectral profiles,” J. Auditory Neurosci., 1, 255–271 (1995).

    Google Scholar 

  52. S. A. Shamma, H. Versnel, and N. Kowalski, “Ripple analysis in the ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally rippled spectra,” J. Auditory Neurosci., 1, 233–255 (1995).

    Google Scholar 

  53. A. M. Small, “Pure-tone masking,” J. Acoust. Soc. Amer., 31, 1619–1625 (1959).

    Google Scholar 

  54. P. G. Stelmachowizc, W. Jesteadt, M. P. Gorga, and J. Mott, “Speech perception ability and psychophysical tuning curves in hearing-impaired listeners,” J. Acoust. Soc. Amer., 77, 621–627 (1985).

    Google Scholar 

  55. A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Frequency resolving power measured by rippled noise,” Hearing Res., 78, 31–40 (1994).

    Article  Google Scholar 

  56. A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Ripple density resolution for various rippled-noise patterns,” J. Acoust. Soc. Amer., 103, 2042–2050 (1998).

    Article  Google Scholar 

  57. A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Ripple depth and density resolution in rippled noise,” J. Acoust. Soc. Amer., 106, 2800–2804 (1999).

    Article  Google Scholar 

  58. A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “The effect of masking noise on rippled-spectrum resolution,” Hearing Res., 151, 157–166 (2001).

    Article  Google Scholar 

  59. A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Rippled-spectrum resolution dependence on level,” Hearing Res., 185, 1–12 (2003).

    Article  Google Scholar 

  60. M. Ter Keurs, J. M. Festen, and R. Plomp, “Effect of spectral envelope smearing on speech reception. I,” J. Acoust. Soc. Amer., 91, 2872–2880 (1992).

    Google Scholar 

  61. M. Ter Keurs, J. M. Festen, and R. Plomp, “Effect of spectral envelope smearing on speech reception. II,” 93, 1547–1552 (1993).

    Google Scholar 

  62. R. S. Tyler, “Measuring hearing loss in the future,” Brit. J. Audiol., 13, 29–40 (1979).

    Google Scholar 

  63. H. Versnel, N. Kowalski, and S. A. Shamma, “Ripple analysis in ferret primary auditory cortex. III. Topographic distribution of ripple response parameters,” Aud. Neurosci., 1, 271–286 (1995).

    Google Scholar 

  64. W. A. Yost, “The dominance region and ripple-noise pitch: A test of the peripheral weighting model,” J. Acoust. Soc. Amer., 72, 416–425 (1982).

    Google Scholar 

  65. W. A. Yost, “Pitch of iterated rippled nose,” J. Acoust. Soc. Amer., 100, 511–518 (1996).

    Google Scholar 

  66. W. A. Yost, “Pitch strength of iterated rippled noise,” J. Acoust. Soc. Amer., 100, 3329–3335 (1996).

    Google Scholar 

  67. W. A. Yost and R. Hill, “Models of the pitch and pitch strength of ripple noise,” J. Acoust. Soc. Amer., 66, 400–410 (1979).

    Google Scholar 

  68. W. A. Yost, R. Hill, and T. Perez-Falcon, “Pitch discrimination of ripple noise,” J. Acoust. Soc. Amer., 63, 1166–1173 (1977).

    Google Scholar 

  69. W. A. Yost, R. D. Patterson, and S. Sheft, “A time domain description for the pitch strength of iterated rippled noise,” J. Acoust. Soc. Amer., 99, 1066–1078 (1996).

    Google Scholar 

  70. F. Zwicker, “On a psychoacoustical equivalent of tuning curves,” in: Facts and Models in Hearing, E. Zwicker and E. Terhardt (eds.), Springer, Berlin (1974), pp. 132–141.

    Google Scholar 

  71. E. Zwicker and E. Terhardt, “Analytical expression for critical-band rate and critical bandwidth as a function of frequency,” J. Acoust. Soc. Amer., 68, 1523–1525 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 90, No. 8, pp. 1001–1014, August, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supin, A.Y. Some Problems in the Measurement of the Frequency-Resolving Ability of Hearing. Neurosci Behav Physiol 35, 845–853 (2005). https://doi.org/10.1007/s11055-005-0134-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0134-x

Key Words

Navigation