Neuroscience and Behavioral Physiology

, Volume 35, Issue 5, pp 549–554 | Cite as

Thyroliberin blocks the potassium A-current in neurons in the respiratory center of adult rats in vitro

  • A. N. Inyushkin


Thyroliberin is a neuropeptide with marked respiratory activity. The neuronal mechanisms underlying this activity were addressed in experiments on transverse slices of brainstem from adult rats in conditions of membrane potential clamping to study effect effects of thyroliberin (10 nM) on the potassium A-current in neurons of two areas of the respiratory center — the ventrolateral areas of the solitary tract nucleus and the pre-Betzinger complex. The A-current, seen in all study neurons in the respiratory center, was partially and reversibly blocked by thyroliberin. A significant reduction in the amplitude of the current was accompanied by an increase in the inactivation constant. The effect of thyroliberin on the amplitude of the A-current was analogous to that of 5 mM 4-aminopyridine. These results show that the stimulatory effects of thyroliberin at the level of respiratory center neurons is at least partly explained by its ability to block the potassium A-current.

Key words

respiratory center solitary tract nucleus pre-Betzinger complex thyroliberin potassium A-current 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Inyushkin, “Effects of thyroliberin on membrane potential and the pattern of spontaneous neuron activity in the respiratory center in vitro in rats,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No.11, 1467–1476 (2002).Google Scholar
  2. 2.
    A. N. Inyushkin and N. A. Merkulova, “Effects of thyroliberin microinjections in terms of the solitary tract nucleus on measures of respiration and circulation,” Ros. Fiziol. Zh. im. I. M. Sechenova, 79, No.11, 52–58 (1993).Google Scholar
  3. 3.
    A. N. Inyushkin, N. A. Merkulova, and S. A. Chepurnov, “The pre-Betzinger complex is involved in mediating the respiratory effects of thyroliberin,” Ros. Fiziol. Zh. im. I. M. Sechenova, 84, No.4, 285–292 (1998).Google Scholar
  4. 4.
    B. Ya. Peskov and A. N. Inyushkin, “Respiratory reactions during exposure of the ventral surface of the medulla oblongata to thyroliberin,” Fiziol. Zh. SSSR, 76, No.5, 637–643 (1990).Google Scholar
  5. 5.
    D. A. Bayliss, F. Viana, and A. J. Berger, “Effects of thyrotropin-releasing hormone on rat motoneurons are mediated by G proteins,” Brain Res., 668, 220–229 (1994).Google Scholar
  6. 6.
    D. A. Bayliss, F. Viana, I. I. Szymeczek-Seay, A. J. Berger, and D. E. Millhorn, “Early postnatal development of thyrotropin-releasing hormone (TRH) expression, TRH receptor binding, and TRH responses in neurons of rat brainstem,” J. Neurosci., 14, No.2, 821–833 (1994).Google Scholar
  7. 7.
    D. A. Bayliss, F. Viana, E. M. Talley, and A. Berger, “Neuromodulation of hypoglossal motoneurons: cellular and developmental mechanisms,” Respir. Physiol., 110, 139–150 (1997).Google Scholar
  8. 8.
    J. Beise, A. N. Inyushkin, and Fr.-K. Pierau, “Effect of temperature on A-currents of three types of PO/AH neurones in rat brain slices,” Eur. J. Neurosci., 10,Suppl. 10, Abstr. 64.15 (1998).Google Scholar
  9. 9.
    J. Beise, A. N. Inyushkin, and Fr.-K. Pierau, “Temperature effects on transient K+-currents in spontaneously active and silent hypothalamic neurones in rat brain slices,” Pflügers Arch., 435, No.6, Supplement, 1–6 (1998).Google Scholar
  10. 10.
    C. L. Cream, A. Li, and E. E. Nattie, “THR causes prolonged respiratory stimulation,” J. Appl. Physiol., 83, No.3, 792–799 (1997).Google Scholar
  11. 11.
    M. S. Dekin, G. B. Richerson, and P. A. Getting, “Thyrotropin-releasing hormone induces rhythmic bursting in neurons of the nucleus tractus solitarius,” Science, 229, 67–69 (1985).Google Scholar
  12. 12.
    H. U. Dodt and W. Zieglgansberger, “Visualizing unstained neurones in living brain slices by infrared DIC-videomicroscopy,” Brain Res., 537, 333–336 (1990).Google Scholar
  13. 13.
    G. D. Funk, M. A. Parkis, S. R. Selvaratnam, and C. Walsh, “Developmental modulation of glutamatergic inspiratory drive to hypoglossal motoneurons,” Respir. Physiol., 110, 125–137 (1997).Google Scholar
  14. 14.
    G. D. Funk, J. C. Smith, and J. L. Feldman, “Development of the thyrotropin-releasing hormone and norepinephrine potentiation of inspiratory-related hypoglossal motoneuron discharge in neonatal and juvenile mice in vitro,” J. Neurophysiol., 72, No.5, 2538–2541 (1994).Google Scholar
  15. 15.
    J. J. Greer, Z. al-Zubaidu, and J. E. Carter, “Thyrotropin-releasing hormone stimulates perinatal rat respirations in vitro,” Amer. J. Physiol., 271, R1160–R1164 (1996).Google Scholar
  16. 16.
    G. Hilaire and B. Duron, “Maturation of the mammalian respiratory system,” Physiol. Rev., 79, No.2, 325–360 (1999).Google Scholar
  17. 17.
    B. Hile, Ionic Channels of Excitable Membranes, Sunderland, Second Edition (1992).Google Scholar
  18. 18.
    J. R. Holtman, Jr., A. L. Buller, P. Hamosch, and R. A. Gillis, “Central respiratory stimulation produced by thyrotropin-releasing hormone in the cat,” Peptides, 7, 202–212 (1986).Google Scholar
  19. 19.
    C.-F. Hsiao and S. H. Chandler, “Characteristics of a fast transient outward current in guinea pig trigeminal motoneurons,” Brain Res., 695, 217–226 (1995).Google Scholar
  20. 20.
    A. N. Inyushkin, J. Beise, and Fr.-K. Pierau, “Temperature effect on transient K+ currents in three types of hypothalamic neurones in rat brain slice,” J. Physiol. (London), 527P, 125P (2000).Google Scholar
  21. 21.
    A. N. Inyushkin and S. A. Chepurnov, “Central respiratory effects of TRH in ultra-low doses,” Neuropeptides, 24, 216 (1993).Google Scholar
  22. 22.
    S. M. Johnson and P. A. Getting, “Excitatory effects of thyrotropin-releasing hormone on neurons within the nucleus ambiguus of adult guinea pigs,” Brain Res., 590, 1–5 (1992).Google Scholar
  23. 23.
    R. Kapoor, Y. G. Li, and K. J. Smith, “Slow sodium-dependent potential oscillations contribute to ectopic firing in mammalian demyelinated axons,” Brain, 120, 647–652 (1997).Google Scholar
  24. 24.
    R. Lechan and R. Toni, “Thyrotropin-releasing hormone neuronal systems in the central nervous system,” in: Neuroendocrinology, CRC Press, London (1992), pp. 279–330).Google Scholar
  25. 25.
    C. A. Livingston and A. J. Berger, “Response of neurons in the dorsal motor nucleus of the vagus to thyrotropin-releasing hormone,” Brain Res., 621, 97–105 (1993).Google Scholar
  26. 26.
    V. Lopantsev and M. Avoli, “Participation of GABA-mediated inhibition in ictal-like discharges in the rat entorhinal cortex,” J. Neurophysiol., 79, 352–360 (1998).Google Scholar
  27. 27.
    R. B. Lynn, M. S. Kreider, and R. R. Miselis, “Thyrotropin-releasing hormone projections to the dorsal motor nucleus and the nucleus of the solitary tract of the rat,” J. Comp. Neurol., 311, 271–288 (1991).Google Scholar
  28. 28.
    R. A. Mueller, A. C. Towle, and G. R. Breese, “The role of vagal afferents and carbon dioxide in the respiratory response to thyrotropin-releasing hormone,” Regul. Peptides, 10, 157–166 (1985).Google Scholar
  29. 29.
    D. Mutolo, F. Bongianni, M. Carfi, and T. Pantaleo, “Respiratory responses to thyrotropin-releasing hormone microinjected into the rabbit medulla oblongata,” Amer. J. Physiol., 277, No.5, R1331–R1338 (1999).Google Scholar
  30. 30.
    J. C. Reckling, J. Champagnat, and M. Denavit-Saubie, “Thyrotropin-releasing hormone (TRH) depolarises a subset of inspiratory neurons in the newborn mouse brainstem in vitro,” J. Neurophysiol., 75, No.2, 811–819 (1996).Google Scholar
  31. 31.
    H. Sontheimer, “Whole-cell patch-clamp recordings,” in: Patch-Clamp Applications and Protocols, Humana Press, Totowa (1995), pp. 37–73.Google Scholar
  32. 32.
    Q.-J. Sun, P. Pilowsky, and I. J. Llewellyn-Smith, “Thyrotropin-releasing hormone inputs are preferentially directed towards respiratory motoneurons in the rat nucleus accumbens,” J. Comp. Neurol., 362, 320–330 (1995).Google Scholar
  33. 33.
    W. Wang, J. K. Tiwari, S. R. Bradley, R. V. Zaykin, and G. B. Richerson, “Acidosis-stimulated neurons of the medullary raphe are serotonergic,” J. Neurophysiol., 85, No.5, 2224–2235 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. N. Inyushkin
    • 1
  1. 1.Samara State UniversitySamaraRussia

Personalised recommendations