Mechanical Behaviors of Granite After Thermal Treatment Under Loading and Unloading Conditions

Abstract

Understanding the mechanical behaviors of granite after thermal treatment under loading and unloading conditions is of utmost relevance to deep geothermal energy recovery. In the present study, a series of loading and unloading triaxial compression tests (20, 40 and 60 MPa) on granite specimens after exposure to different temperatures (20, 200, 300, 400, 500 and 600 °C) was carried out to quantify the combined effects of thermal treatment and loading/unloading stress conditions on granite strength and deformation. Changes in the microstructure of granite exposed to high temperatures were revealed by optical microscopy. The experimental results indicate that both, thermal treatment and loading/unloading stress conditions, degrade the mechanical behaviors and further decrease the carrying capacity of granite. The gradual degradation of the mechanical characteristics of granite after thermal treatment is mainly associated with the evolution of thermal micro-cracks based on optical microscopy observations. The unloading stress state induces the extension of tension cracks parallel to the axial direction, and thus, the mechanical properties are degraded. Temperatures above 400 °C have a more significant influence on the mechanical characteristics of granite than the unloading treatment, whereby 400 °C can be treated as a threshold temperature for the delineation of significant deterioration. This study is expected to support feasibility and risk assessments by means of providing data for analytical calculations and numerical simulations on granite exposed to high temperatures during geothermal energy extraction.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

References

  1. Breede, K., Dzebisashvili, K., Liu, X. L., & Falcone, G. (2013). A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geothermal Energy, 1(1), 4.

    Article  Google Scholar 

  2. Chen, G. Q., Li, T. B., Li, G. M., Qin, C. A., & He, Y. H. (2018). Influence of temperature on the brittle failure of granite in deep tunnels determined from triaxial unloading tests. European Journal of Environmental and Civil Engineering, 22(sup1), 269–285.

    Article  Google Scholar 

  3. Chen, J., Jiang, D. Y., Ren, S., & Yang, C. H. (2016). Comparison of the characteristics of rock salt exposed to loading and unloading of confining pressures. Acta Geotechnica, 11(1), 221–230.

    Article  Google Scholar 

  4. Clark, S. P. (1966). Handbook of physical constants. Geological Society of America, 97, 459–482.

    Article  Google Scholar 

  5. Dai, B., Zhao, G. Y., Konietzky, H., & Wasantha, P. L. P. (2018). Experimental and numerical study on the damage evolution behaviour of granitic rock during loading and unloading. KSCE Journal of Civil Engineering, 22(9), 3278–3291.

    Article  Google Scholar 

  6. Ding, Q. L., Ju, F., Mao, X. B., Ma, D., Yu, B. Y., & Song, S. B. (2016). Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment. Rock Mechanics and Rock Engineering, 49(7), 2641–2653.

    Article  Google Scholar 

  7. Duchane, D., & Brown, D. (2002). Hot dry rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. GHC Bulletin December; 2002. pp. 13–9.

  8. Fan, L. F., Gao, J. W., Wu, Z. J., Yang, S. Q., & Ma, G. W. (2018). An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Applied Thermal Engineering, 140, 505–519.

    Article  Google Scholar 

  9. Feng, G., Yong, K., Meng, T., Hu, Y. Q., & Li, X. H. (2017). The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone. Rock Mechanics and Rock Engineering, 50(8), 2007–2019.

    Article  Google Scholar 

  10. Fox, D. B., Sutter, D., Beckers, K. F., Lukawski, M. Z., Koch, D. L., Anderson, B. J., & Tester, J. W. (2013). Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs. Geothermics, 46(4), 42–54.

    Article  Google Scholar 

  11. Frash, L. P., Gutierrez, M., Hampton, J., & Hood, J. (2015). Laboratory simulation of binary and triple well EGS in large granite blocks using AE events for drilling guidance. Geothermics, 55, 1–15.

    Article  Google Scholar 

  12. Gao, J., Zhang, H. J., Zhang, S. Q., Chen, X. B., Cheng, Z. P., Jia, X. F., et al. (2018). Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, 76, 15–25.

    Article  Google Scholar 

  13. Glover, P. W. J., Baud, P., Darot, M., Meredith, P. G., Boon, S. A., LeRavalec, M., et al. (1995). α/β phase transition in quartz monitored using acoustic emissions. Geophysical Journal of the Royal Astronomical Society, 120(3), 775–782.

    Article  Google Scholar 

  14. Gónzalez-Gómez, W. S., Quintana, P., May-Pat, A., Avilés, F., May-Crespo, J., & Alvarado-Gil, J. J. (2015). Thermal effects on the physical properties of limestone from the Yucatan Peninsula. International Journal of Rock Mechanics & Mining Sciences, 75, 182–189.

    Article  Google Scholar 

  15. Han, G. S., Jing, H. W., Su, H. J., Liu, R. C., Yin, Q., & Wu, J. Y. (2019). Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone. Environmental Earth Sciences, 78(5), 146.

    Article  Google Scholar 

  16. Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, 106(15715), 1013–1035.

    Google Scholar 

  17. Huang, X., Liu, Q. S., Liu, B., Liu, X. W., & Pan, Y. C. (2017). Experimental study on the dilatancy and fracturing behavior of soft rock under unloading conditions. International Journal of Civil Engineering, 15, 921–948.

    Article  Google Scholar 

  18. Jiang, G. H., Zuo, J. P., Li, Y. L., & Wei, X. (2019). Experimental investigation on mechanical and acoustic parameters of different depth shale under the effect of confining pressure. Rock Mechanics and Rock Engineering, 52(11), 4273–4286.

    Article  Google Scholar 

  19. Jin, P. H., Hu, Y. Q., Shao, J. X., Zhao, G. K., Zhu, X. Z., & Li, C. (2019). Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics, 78, 118–128.

    Article  Google Scholar 

  20. Kumari, W. G. P., Beaumont, D. M., Ranjith, P. G., Perera, M. S. A., Isaka, B. L. A., & Khandelwal, M. (2019). An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 5(1), 47–64.

    Article  Google Scholar 

  21. Labuz, J. F., Zang. A. (2012). Mohr–Coulomb Failure Criterion. Rock Mechanics & Rock Engineering, 45(6), 975–979.

  22. Lau, J. S. O., & Chandler, N. A. (2004). Innovative laboratory testing. International Journal of Rock Mechanics & Mining Sciences, 41(8), 1427–1445.

    Article  Google Scholar 

  23. Li, D. Y., Sun, Z., Xie, T., Li, X. B., & Ranjith, P. G. (2017). Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths. Engineering Geology, 228, 270–281.

    Article  Google Scholar 

  24. Liang, Y. P., Li, Q. M., Gu, Y. L., & Zou, Q. L. (2017). Mechanical and acoustic emission characteristics of rock: Effect of loading and unloading confining pressure at the postpeak stage. Journal of Natural Gas Science and Engineering, 44, 54–64.

    Article  Google Scholar 

  25. Liu, S., & Xu, J. (2015). An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, 185, 63–70.

    Article  Google Scholar 

  26. Mahanta, B., Singh, T. N., & Ranjith, P. G. (2016). Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Engineering Geology, 210, 103–114.

    Article  Google Scholar 

  27. Meng, L. B., Li, T. B., Liao, A. J., & Zeng, P. (2018). Anisotropic mechanical properties of sandstone under unloading confining pressure at high temperatures. Arabian Journal for Science & Engineering, 43, 5283–5294.

    Article  Google Scholar 

  28. Mohamadi, M., & Wan, R. G. (2016). Strength and post-peak response of Colorado shale at high pressure and temperature. International Journal of Rock Mechanics & Mining Sciences, 84, 34–46.

    Article  Google Scholar 

  29. Nasseri, M. H. B., Schubnel, A., & Young, R. P. (2007). Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. International Journal of Rock Mechanics & Mining Sciences, 44, 601–616.

    Article  Google Scholar 

  30. Peng, J., Rong, G., Cai, M., Tao, M. D., & Zhou, C. B. (2016). Comparison of mechanical properties of undamaged and thermal-damaged coarse marbles under triaxial compression. International Journal of Rock Mechanics & Mining Sciences, 83, 135–139.

    Article  Google Scholar 

  31. Pranay, A., Palash, P., John, M. L., & Joseph, M. (2019). Efficient workflow for simulation of multifractured enhanced geothermal systems (EGS). Renewable Energy, 131, 763–777.

    Article  Google Scholar 

  32. Qiu, S. L., Feng, X. T., Xiao, J. Q., & Zhang, C. Q. (2014). An experimental study on the pre-peak unloading damage evolution of marble. Rock Mechanics & Rock Engineering, 47(2), 401–419.

    Article  Google Scholar 

  33. Rong, G., Peng, J., Yao, M. D., Jiang, Q. H., & Wong, L. N. Y. (2018). Effects of specimen size and thermal-damage on physical and mechanical behavior of a fine-grained marble. Engineering Geology, 232, 46–55.

    Article  Google Scholar 

  34. Rathnaweera, T. D., Ranjith, P. G., Gu, X., Perera, M. S. A., Kumari, W. G. P., Wanniarachchi, W. A. M., et al. (2018). Experimental investigation of thermomechanical behaviour of clay-rich sandstone at extreme temperatures followed by cooling treatments. International Journal of Rock Mechanics & Mining Sciences, 107, 208–223.

    Article  Google Scholar 

  35. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682.

    Article  Google Scholar 

  36. Shen, Y. J., Zhang, Y. L., Gao, F., Yang, G. S., & Lai, X. P. (2018). Influence of Temperature on the Microstructure Deterioration of Sandstone. Energies, 11(7), 1753.

    Article  Google Scholar 

  37. Singh, B., Ranjith, P. G., Chandrasekharam, D., Viete, D., Singh, H. K., & Lashin, A. (2015). Thermo-mechanical properties of Bundelkhand granite near Jhansi, India. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 1, 35–53.

    Article  Google Scholar 

  38. Siratovich, P. A., Heap, M. J., Villeneuve, M. C., Cole, J. W., Kennedy, B. M., Davidson, J., & Reuschlé, T. (2016). Mechanical behaviour of the Rotokawa Andesites (New Zealand): Insight into permeability evolution and stress-induced behaviour in an actively utilised geothermal reservoir. Geothermics, 64, 163–179.

    Article  Google Scholar 

  39. Somerton, W. H. (1993). Thermal properties and temperature related behaviour of rock/fluid systems. Journal of Volcanology & Geothermal Research, 56(1–2), 171–172.

    Google Scholar 

  40. Tian, H., Ziegler, M., & Kempka, T. (2014). Physical and mechanical behavior of claystone exposed to temperatures up to 1000 °C. International Journal of Rock Mechanics & Mining Sciences, 70, 144–153.

    Article  Google Scholar 

  41. Ulusay, R., & Hudson, J.A. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Commission on testing methods, International Society of Rock Mechanics, Compilation arranged by the ISRM Turkish National Group, Ankara, Turkey.

  42. Wang, F., Frühwirt, T., & Li, Y. (2020). The influence of temperature and high-speed heating on tensile strength of granite and the application of digital image correlation on tensile failure processes. Rock Mechanics and Rock Engineering, 53(4), 1935–1952.

    Article  Google Scholar 

  43. Wu, Q. H., Weng, L., Zhao, Y. L., Guo, B. H., & Luo, T. (2019a). On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates. Engineering Geology, 253, 94–110.

    Article  Google Scholar 

  44. Wu, X. G., Huang, Z. W., Song, H. Y., Zhang, S. K., Cheng, Z., Li, R., et al. (2019b). Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen. Rock Mechanics and Rock Engineering, 52(7), 2123–2139.

    Article  Google Scholar 

  45. Yang, S. Q., Xu, P., Li, Y. B., & Huang, Y. H. (2017). Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments. Geothermics, 69, 93–109.

    Article  Google Scholar 

  46. Yang, S. Q., Tian, W. L., Elsworth, D., Wang, J. G., & Fan, L. F. (2020). An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression. Rock Mechanics and Rock Engineering, 53, 4403–4427.

    Article  Google Scholar 

  47. Yu, K. F., Zhou, Y. J., Liu, Y. L., Liu, F. S., Hu, L. P., Ao, W. Q., et al. (2020). Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(1), 1–12.

    Article  Google Scholar 

  48. Zhang, W. Q., Sun, Q., Hao, S. Q., Geng, J. S., & Lv, C. (2016). Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Applied Thermal Engineering, 98, 1297–1304.

    Article  Google Scholar 

  49. Zhang, Y. J., Ma, Y. Q., Hu, Z. J., Lei, H. L., Bai, L., Lei, Z. H., & Zhang, Q. (2019). An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite. Renewable Energy, 140, 615–624.

    Article  Google Scholar 

  50. Zhao, G. Y., Dai, B., Dong, L. J., & Chen, Y. (2015). Energy conversion of rocks in process of unloading confining pressure under different unloading paths. Transactions of Nonferrous Metals Society of China, 25(5), 1626–1632.

    Article  Google Scholar 

  51. Zhu, Z. N., Tian, H., Jiang, G. S., & Cheng, W. (2018). Effects of high temperature on the mechanical properties of chinese marble. Rock Mechanics and Rock Engineering, 51(6), 1937–1942.

    Article  Google Scholar 

  52. Zhu, Z., Tian, H., Chen, J., Jiang, G. S., Dou, B., Xiao, P., & Mei, G. (2020). Experimental investigation of thermal cycling effect on physical and mechanical properties of heated granite after water cooling. Bulletin of Engineering Geology and the Environment, 79, 2457–2465.

    Article  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by National Natural Science Foundation of China (No. 41602374 and No. 41674180), the Fundamental Research Funds for the Central Universities-Cradle Plan for 2017 (Grant No. CUGL170207) and the National Key Research and Development Program of China (No. 2019YFB1504201, No. 2019YFB1504203 and No. 2019YFB1504204).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Tian, H., Kempka, T. et al. Mechanical Behaviors of Granite After Thermal Treatment Under Loading and Unloading Conditions. Nat Resour Res (2021). https://doi.org/10.1007/s11053-021-09815-7

Download citation

Keywords

  • Granite
  • Thermal treatment
  • Unloading
  • Mechanical properties
  • Micro-structure