Permeability Testing of Drill Core from Basement Rocks in the Fault-Hosted Gryphon U Deposit (Eastern Athabasca Basin, Canada): Insights into Fluid–Rock Interactions Related to Deposit Formation and Redistribution

Abstract

Fluid percolation conditions in fault zones are often inferred in geologic studies, but the porosity and permeability of rocks are rarely tested during mineral exploration drilling. Routine permeability and porosity tests on drill core, with adequate detection limits and accuracy, can provide new insights into present- and paleo-fluid flow processes and deposit formation in sedimentary basins and permeable fault zones (e.g. uranium deposits, sub-sea hydrothermal ore deposits). In this study, geological and hydrogeological observations were combined with results of over a thousand permeability tests at spot-on unconfined drill core, extracted along transects through the Gryphon U deposit and fault zone, using a pressure-decay N2 gas probe with adequate seal to the rock surface. The new seal method allowed a wide range of permeability determinations under field conditions (over 5 × 10–20 to 10–12 m2). The penetrative macropore networks were observed directly from gas discharge patterns on drill core surfaces. For the tested crystalline basement rocks below the Athabasca Basin, we inferred that the matrix permeability and porosity distribution appear to be preserved since the late Paleoproterozoic/Mesoproterozoic, under the cover of a sedimentary basin. The permeability values at the present time, and the patterns of rock alteration and deformation, offer insights to paleo-hydrogeological conditions. The gneissic and pegmatitic host rocks have relatively low permeability at present time, except fractured (discrete flow channels) and/or intensely altered to a more porous rock. The alternating zones of silicification and desilicification appear to pre-date the intense argillic alteration, and it may have been a result of earlier hydrothermal activity. The Gryphon U deposit occurs in elongated narrow “lenses” along several fault strands of a fault zone (below the unconformity surface and within basement rocks). U-ore is a cementing mineral in fault-related fractures and fault rocks, but remnant flow channels in fractures in U-ore are still preserved. The most permeable and porous fault rocks are coarse gouges (~ 40% porosity, ~ 10–15 m2 permeability) with approximately three orders of magnitude higher rock matrix permeability than the gneissic host rocks. Such fault rocks locally contain carbonaceous matter, and similar fault rocks may have been preferentially mineralized by U to form the U ore lenses, but the role of brittle-ductile and ductile fault and shear zone rocks in U mineralization is not yet clear at Gryphon. Our review of U–Pb uraninite ages at Gryphon suggests a protracted faulting and U-mineralization history. In response to numerous episodic events of brittle deformation and hydrothermal alteration, the permeability and porosity of the host rocks and U-ores have evolved, as observed by multiple cross-cutting reaction fronts. We inferred from the test results and the alteration halo at the U deposit, affecting a wide part of the fault zone, that the permeability and porosity increased by the downward ingress of U-rich acidic basinal brine that percolated into the basement-hosted (rooted) shear/fault zone and nearby crystalline basement rocks. However, the younger prominent U roll/redox-fronts caused local-scale reduction in porosity and permeability by hematite cementation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Data Availability

The data sets generated during and/or analysed during the current study are available in the Figshare repository, https://doi.org/10.6084/m9.figshare.12365984.v2.

References

  1. Aaltonen, I., Front, K., Gehör, S., & Sahlstedt, E. (2018). Hydrothermal alteration of bedrock at Olkiluoto. POSIVA Report 2018–3, Posiva Oy, Helsinki, Finland. Available at http://www.posiva.fi/en/databank/posiva_reports/hydrothermal_alteration_of_bedrock_at_olkiluoto.1871.xhtml?xm_col_type=4&cd_offset=#.XsNwAy1L3OQ.

  2. Achtziger-Zupancic, P., Loew, S., & Mariéthoz, G. (2017). A new global database to improve predictions of permeability distribution in crystalline rocks at site scale. Journal of Geophysical Research Solid Earth, 122, 3513–3539.

    Article  Google Scholar 

  3. Aghbelagh, Y. B., & Yang, J. (2017). Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modeling. Hydrogeology Journal, 25, 465–486.

    Article  Google Scholar 

  4. Alexandre, P., Kyser, K., Thomas, D., Polito, P., & Marlat, J. (2009). Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Mineralium Deposita, 44, 41–59.

    Article  Google Scholar 

  5. Annesley, I.R., Madore, C., & Cutler, J. (2001). Synchrotron X-Ray analysis of graphitic pelitic gneisses in the vicinity of unconformity-type uranium mineralization. In: Summary of Investigations 2001. Saskatchewan Geological Survey, Saskatchewan Energy and Mines, Miscellaneous Report 4(2), 132–140. Available at https://www.researchgate.net/publication/273774714_Synchrotron_X-ray_analysis_of_graphitic_pelitic_gneisses_in_the_vicinity_of_unconformity-type_uranium_mineralization.

  6. Annesley, I.R., Madore, C. & Hajnal, Z. (2003). Wollaston–Mudjatik transition zone: its characteristics and influence on the genesis of unconformity-type uranium deposits. In: Cuney, M. (ed.) Proceedings of the International Conference on Uranium Geochemistry. Nancy, France, 55–58. Available at https://www.researchgate.net/publication/273774296_Wollaston-Mudjatik_transition_zone_its_characteristics_and_influence_on_the_genesis_of_unconformity-type_uranium_deposits.

  7. Annesley, l.R., Madore, C., Kusmirski, R.T., & Bonli, T. (2000). Uraninite-bearing granitic pegmate, Moore Lakes, Saskatchewan: Petrology and U-Th-Pb chemical ages. In: Summary of Investigations 2000, Volume 2, Miscellaneous Report 2000–4.2, Saskatchewan Geological Survey. Available at https://publications.saskatchewan.ca/#/products/4985.

  8. Annesley, I. R., Madore, C., & Portella, P. (2005). Geology and thermotectonic evolution of the western margin of the Trans-Hudson Orogen: evidence from the eastern sub-Athabasca basement, Saskatchewan. Canadian Journal of Earth Sciences, 42(4), 573–597.

    Article  Google Scholar 

  9. Annesley, I.R., Mercadier, J., Verran, D. & Pascal, M. (2017). U-Pb isotopic ages and associated REE geochemistry from the Phoenix and Gryphon uranium deposits (Wheeler River), Athabasca Basin, Saskatchewan, Canada. In: Mercier-Langevin, P. et al. (eds) Proceedings of the 14th Biennial SGA Meeting, Mineral Resources to Discover, Quebec, (2), 707–710. Available at: https://www.researchgate.net/publication/318316538_U-Pb_Isotopic_Ages_and_Associated_REE_Geochemistry_from_the_Phoenix_and_Gryphon_Uranium_Deposits_Wheeler_River_Athabasca_Basin_Saskatchewan_Canada.

  10. Annesley, I.R. & Millar, R. (2011). Tourmaline- and sulfide-bearing graphitic pelitic gneisses of the Paleoproterozoic Wollaston Group, northern Saskatchewan: new insights into understanding the carbon-sulfur-boron-uranium geochemical system with implications for U/C-type uranium deposits. 25th International Applied Geochemistry Symposium, Finland.

  11. Annesley, I.R. & Wheatley, K. (2011). Insights into understanding the carbon-uranium (6 sulfur and boron) geochemical system along a retrograde P-T-t path from 600 C to 250 C: New constraints with implications for U/C-type uranium deposits. GAC-MAC 2011 annual meeting, May 2011.

  12. Ansdell, K. M. (2005). Tectonic evolution of the Manitoba-Saskatchewan segment of the Paleoproterozoic Trans-Hudson Orogen, Canada. Canadian Journal of Earth Sciences, 42, 741–759.

    Article  Google Scholar 

  13. Ashton, K.E. (2010). The Gunnar mine: an episyenite-hosted, granite-related uranium deposit in the Beaverlodge uranium district. In: Summary of Investigations 2010, Vol. 2, Miscellaneous Report 2010-4.2, Saskatchewan Geological Survey. Available at https://publications.saskatchewan.ca/#/products/82211.

  14. Ballouard, C., Poujol, M., Mercadier, J., Deloule, E., Boulvais, P., Baele, J. M., et al. (2018). Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): The result of long-term oxidized hydrothermal alteration during strike-slip deformation. Mineralium Deposita, 53, 601–628. https://doi.org/10.1007/s00126-017-0761-5.

    Article  Google Scholar 

  15. Bickford, M. E., Collerson, K. D., Lewry, J. F., Van Schmus, W. R., & Chiarenzelli, J. R. (1990). Proterozoic collisional tectonism in the Trans-Hudson Orogen, Saskatchewan. Geology, 18, 14–18.

    Article  Google Scholar 

  16. Black, J. H., Woodman, N. D., & Barker, J. A. (2017). Groundwater flow into underground openings in fractured crystalline rocks: an interpretation based on long-channels. Hydrogeology Journal, 25, 445–463.

    Article  Google Scholar 

  17. Boiron, B. C., Cathelineau, M., & Richard, A. (2010). Fluid flows and metal deposition near basement cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids, 10, 270–292.

    Google Scholar 

  18. Brace, W. F. (1980). Permeability of crystalline and argillaceous rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17(5), 241–251.

    Article  Google Scholar 

  19. Brace, W. F., Walsh, J. B., & Frangos, W. T. (1968). Permeability of granite under high pressure. Journal of Geophysical Research, 73, 2225–2236.

    Article  Google Scholar 

  20. Brosch, F. J., Schachner, K., Blümel, M., Fasching, A., & Fritz, H. (2000). Preliminary investigation results on fabrics and related physical properties of an anisotropic gneiss. Journal of Structural Geology, 22(11–12), 1773–1787.

    Article  Google Scholar 

  21. Brown, P. A., & Rey, N. A. C. (1989). Statistical analysis of the geological–hydrogeological conditions within part of the Eye-Dashwa Pluton, Atikokan, northwestern Ontario. Canadian Journal of Earth Sciences, 26(2), 345–356.

    Article  Google Scholar 

  22. Brown, S., & Smith, M. (2013). A transient-flow syringe air permeameter. Geophysics, 78(5), D307–D313.

    Article  Google Scholar 

  23. Caine, J. S., Evans, J. P., & Foster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24, 1025–1028.

    Article  Google Scholar 

  24. Caine, J. S., Minor, S. A., Grauch, V. J. S., Budahn, J. R., & Tucker, T. K. (2017). A comprehensive survey of faults, breccias, and fractures in and flanking the eastern Española Basin, Rio Grande rift, New Mexico. Geosphere, 13(5), 1566–1609.

    Article  Google Scholar 

  25. Campbell, J.E., (2007). Quaternary geology of the eastern Athabasca Basin, Saskatchewan. In C.W. Jefferson & G. Delaney (Eds.), EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin, 588, 211–228.

  26. Card, C. (2014). Altered pelitic gneisses and associated “quartzite ridges” beneath the southeastern Athabasca Basin: alteration facies and their relationship to uranium deposits along the Wollaston-Mudjatik transition. In: Summary of Investigations 2013, Volume 2, Miscellaneous Report 2013–4.2. Saskatchewan Geological Survey. Available at https://publications.saskatchewan.ca/#/products/80115.

  27. Card, C.D. (2017). Distribution and significance of crystalline rocks in the Patterson Lake uranium exploration corridor of northwest Saskatchewan. In: Summary of Investigations 2017, Volume 2, Miscellaneous Report 2017–4.2, Saskatchewan Geological Survey. Available at https://publications.saskatchewan.ca/#/products/88095.

  28. Card, C. D., Bethune, K. M., Rayner, N., & Creaser, R. A. (2018a). Characterising the southern part of the Hearne Province: a forgotten part of Canada’s Shield revisited. Precambrian Research, 307, 51–65.

    Article  Google Scholar 

  29. Card, C.D., Pana, D., Portella, P., Thomas, D.J., & Annesley, I.R. (2007). Basement rocks to the Athabasca basin, Saskatchewan and Alberta. In: Jefferson, C.W. & Delaney, G. (Eds.), EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin, 588, 69–87.

  30. Card, C.D., Rayner, N., Pearson, G., Luo, Y., & Creaser, R. (2018b). Geochronological results from the southern Athabasca Basin region, Saskatchewan. In: Summary of Investigations 2018, Volume 2, Saskatchewan Geological Survey, Saskatchewan Ministry of Energy and Resources, Miscellaneous Report 2018–4.2, Paper A-4, 15p. Available at https://www.researchgate.net/publication/331907308_Geochronological_results_from_the_southern_Athabasca_Basin_region_Saskatchewan.

  31. Cathelineau, M. (1986). The hydrothermal alkali metasomatism effects on granitic rocks; quartz dissolution and related subsolidus changes. Journal of Petrology, 27(4), 945–965.

    Article  Google Scholar 

  32. Chi, G., Li, Z., Chu, H., Bethune, K. M., Quirt, D. H., Ledru, P., et al. (2018). A shallow-burial mineralization model for the unconformity-related uranium deposits in the Athabasca Basin. Economic Geology, 113, 1209–1217.

    Article  Google Scholar 

  33. Chi, G., Chu, H., Petts, D., Potter, E., Jackson, S., & Williams-Jones, A. (2019). Uranium-rich diagenetic fluids provide the key to unconformity-related uranium mineralization in the Athabasca Basin. Scientific Reports, 9, 5530.

    Article  Google Scholar 

  34. Chiarenzelli, J., Aspler, L., Villeneuve, M., & Lewry, J. (1998). Early Proterozoic evolution of the Saskatchewan craton and its allochthonous cover, Trans-Hudson Orogen. The Journal of Geology, 106(3), 247–267.

    Article  Google Scholar 

  35. Cloutier, J., Kyser, K., Olivo, G. R., Alexandre, P., & Halaburda, J. (2009). The Millennium uranium deposit, Athabasca Basin, Saskatchewan, Canada: An atypical basement-hosted unconformity-related uranium deposit. Economic Geology, 104(6), 815–840.

    Article  Google Scholar 

  36. Cloutier, J., Kyser, K., Olivo, G. R., & Brisbin, D. (2011). Geochemical, isotopic, and geochronlologic constraints on the formation of the Eagle Point basement-hosted uranium deposit, Athabasca Basin, Saskatchewan, Canada and recent remobilization of primary uraninite in secondary structures. Mineralium Deposita, 46, 35–56.

    Article  Google Scholar 

  37. Corbett, P., Potter, D., Mohammed, K., & Liu, S. (2001). Forget better statistics - concentrate on better sample collection. Proceedings of the 6th Nordic Symposium on Petrophysics, 15–16 May 2001, NTNU, Trondheim, Norway. Available at http://www.ipt.ntnu.no/nordic/Papers/6th_Nordic_Corbett.pdf.

  38. Cox, S. F. (1995). Faulting processes and high fluid pressures: An example of fault valve behavior from the Wattle Gully fault, Victoria, Australia. Journal of Geophysical Research, 100(B7), 12841–12859.

    Article  Google Scholar 

  39. Cox, S. F. (2016). Injection-driven swarm seismicity and permeability enhancement: Implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes. Economic Geology, 111(3), 559–587.

    Article  Google Scholar 

  40. Crawford, B. R., Faulkner, D. R., & Rutter, E. H. (2008). Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge. Journal of Geophysical Research, 113, B03207.

    Article  Google Scholar 

  41. Cui, J.-Q., Yang, S.-Y., Jiang, S.-Y., & Xie, J. (2019). Improved accuracy for trace element analysis of Al and Ti in quartz by electron probe microanalysis. Microscopy and Microanalysis, 25, 47–57.

    Article  Google Scholar 

  42. Dahlkamp, F. J. (1993). Uranium ore deposits. Berlin: Springer. https://doi.org/10.1007/978-3-662-02892-6.

    Google Scholar 

  43. Davatzes, N. C., & Hickman, S. H. (2005). Controls on fault-hosted fluid flow: Preliminary results from the Coso geothermal field, CA. GRC Transactions, 29, 343–348.

    Google Scholar 

  44. David, C., Wong, T.-f, Zhu, W., & Zhang, J. (1994). Laboratory measurement of compaction-induced permeability change in porous rock: implications for the generation and maintenance of pore pressure excess in the crust. Pure and Applied Geophysics, 143, 425–456.

    Article  Google Scholar 

  45. Davis, J. M., Wilson, J. L., & Phillips, F. M. (1994). A portable air-minipermeameter for rapid in-situ field measurements. Ground Water, 32(2), 258–266.

    Article  Google Scholar 

  46. Denison Mines. (2018). Prefeasibility Study Report for the Wheeler River Uranium Project, Saskatchewan, Canada. Report Prepared by SRK Consulting (Canada) Inc. for Denison Mines Corp., NI 43–101 Technical. Available at https://denisonmines.com/site/assets/files/5694/2018-10-30-dml-43-101-pfs-report.pdf.

  47. Derome, D., Cathelineau, M., Cuney, M., Fabre, C., Lhomme, T., & Banks, D. A. (2005). Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: A Raman and laser-induced breakdown spectroscopic study of fluid inclusions. Economic Geology, 100, 1529–1545.

    Article  Google Scholar 

  48. Dill, H. G. (2016). Kaolin: soil, rock and ore from the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, 161, 16–129. https://doi.org/10.1016/j.earscirev.2016.07.003.

    Article  Google Scholar 

  49. Egli, D., Baumann, R., Küng, S., Berger, A., Baron, L., & Herwegh, M. (2018). Structural characteristics, bulk porosity and evolution of an exhumed long-lived hydrothermal system. Tectonophysics, 747–748, 239–258.

    Article  Google Scholar 

  50. Eldursi, K., Chi, G., Bethune, K., Li, Z., Ledru, P., & Quirt, D. (2020). New insights from 2- and 3-D numerical modelling on fluid flow mechanisms and geological factors responsible for the formation of the world-class Cigar Lake uranium deposit, eastern Athabasca Basin, Canada. Mineralium Deposita. https://doi.org/10.1007/s00126-020-00979-5.

    Article  Google Scholar 

  51. Everitt, R., Brown, A., Ejeckam, R., Sikorsky, R., & Woodcock, D. (1998). Litho-structural layering within the Archean Lac du Bonnet Batholith, at AECL’s Underground Research Laboratory, southeastern Manitoba. Journal of Structural Geology, 20(9/10), 1291–1304.

    Article  Google Scholar 

  52. Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., & Withjack, M. O. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557–1575.

    Article  Google Scholar 

  53. Fayek, M., & Kyser, K. K. (1997). Characterization of multiple fluid events and rare-earth-828 element mobility associated with formation of unconformity-type uranium deposits in the 829 Athabasca Basin, Saskatchewan. The Canadian Mineralogist, 35, 627–658.

    Google Scholar 

  54. Filomena, C. M., Hornung, J., & Stollhofen, H. (2014). Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices. Solid Earth, 5, 1–11.

    Article  Google Scholar 

  55. Goggin, D. J. (1993). Probe permeametry: is it worth the effort? Marine and Petroleum Geology, 10(4), 299–308.

    Article  Google Scholar 

  56. Goggin, D. J., Thrasher, R. L., & Lake, L. W. (1988). A theoretical and experimental analysis of minipermeameter response including gas slippage and high velocity flow effects. Situ, 12(1–2), 79–116.

    Google Scholar 

  57. Grare, A., Lacombe, O., Mercadier, J., Benedicto, A., Guilcher, M., Trave, A., et al. (2018). Fault zone evolution and development of a structural and hydrological barrier: The quartz breccia in the Kiggavik area (Nunavut, Canada) and its control on uranium mineralization. Minerals, 8, 319.

    Article  Google Scholar 

  58. Guffey, S., Piercey, S., Ansdell, K., Kotzer, T., Zaluski, G., & Quirt, D. (2018). Geochemical footprint of the Millennium unconformity-type uranium deposit, Canada: Implications for vectoring new targets. Geochemistry: Exploration. Environment, Analysis, 19, 395–413. https://doi.org/10.1144/geochem2018-036.

    Article  Google Scholar 

  59. Guiochon, G. (1966). Flow of gases in porous media: Problems raised by the operation of gas chromatography columns. Chromatographic Reviews, 8, 1–47.

    Article  Google Scholar 

  60. Gustafson, L. B., Vidal, C. E., Pinto, R., & Noble, D. C. (2004). Porphyry-epithermal transition, Cajamarca region, northern Peru. In Andean Metallogeny: New Discoveries, Concepts, and Updates. SEG Special Publication 11, 279–299.

  61. Hajnal, Z., White, D. J., Takacs, E., Gyorfi, I., Annesley, I. R., Wood, G., et al. (2010). Application of modern 2D and 3D seismic reflection techniques for uranium exploration in the Athabasca Basin. Canadian Journal of Earth Sciences, 47, 761–782. https://doi.org/10.1139/E10-026.

    Article  Google Scholar 

  62. Hakala, M., & Haikkila, E. (1997). Summary report - Development of laboratory tests and the stress-strain behaviour of Olkiluoto mica gneiss. Report POSIVA-97–04, Posiva Oy, Helsinki, Finland. Available at http://www.posiva.fi/files/2656/POSIVA-97-04_web.pdf.

  63. Halvorsen, C., & Hurst, A. (1990). Principles, Practice, and Applications of Laboratory Minipermeametry. In: Advances in Core Evaluation, Worthington, P.F. (Ed.), Reviewed proceedings of the first society of core analysts european core analysis symposium (pp. 521–549). Gordon and Breach Science Publishers

  64. Hartikainen, J., Hartikainen, K., Hautojärvi, A., Kuoppamäki, K., & Timonen, J. (1996). Helium gas methods for rock characteristics and matrix diffusion. Report POSIVA-96–22, Posiva Oy, Helsinki, Finland. Available at http://www.posiva.fi/files/2648/POSIVA-96-22_web.pdf.

  65. Harvey, S.E., & Bethune, K.M. (2007). Context of the Deilmann orebody, Key Lake mine, Saskatchewan. In: Jefferson C.W. & Delaney G. (Eds.), EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588, p. 249–266.

  66. Heesakkers, V., Murphy, S., & Reches, Z. (2011). Earthquake rupture at focal depth, Part I: Structure and rupture of the Pretorius fault, TauTona Mine, South Africa. Pure and Applied Geophysics, 168, 2395–2425.

    Article  Google Scholar 

  67. Heikamp, S., & Nover, G. (2003). An integrated study on physical properties of a KTB gneiss sample and marble from Portugal: Pressure dependence of the permeability and frequency dependence of the complex electrical impedance. Pure and Applied Geophysics, 160, 929–936.

    Article  Google Scholar 

  68. Henley, R. W., & Ellis, A. J. (1983). Geothermal systems ancient and modern: A geochemical review. Earth-Science Reviews, 19, 1–50.

    Article  Google Scholar 

  69. Hillacre, S. (2018). Structural analysis, paragenesis, and geochronology of the arrow uranium deposit, Western Athabasca Basin, Saskatchewan, Canada: Implications for the Development of the Patterson Lake Corridor. M.Sc. Thesis, University of Saskatchewan, Saskatoon. Available at http://hdl.handle.net/10388/11974.

  70. Hoeve, J., & Quirt, D.H. (1984). Uranium mineralization and host rock alteration in relation to clay mineral diagenesis and evolution of the middle-Proterozoic, Athabasca Basin, northern 849 Saskatchewan, Canada. Saskatchewan Research Council, SRC Technical Report 187, R-855–2-B-84, 190p.

  71. Hoeve, J., & Quirt, D. (1987). A stationary redox front as a critical factor in the formation of high-grade, unconformity-type uranium ores in the Athabasca Basin, Saskatchewan, Canada. Bulletin of Mineralogy, 110, 157–171.

    Article  Google Scholar 

  72. Hoeve, J., & Sibbald, T. I. I. (1978). On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada. Economic Geology, 73(8), 1450–1473.

    Article  Google Scholar 

  73. Hoffman, P. F. (1988). United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 16, 543–603.

    Article  Google Scholar 

  74. Huysmans, M., Peeters, L., Moermans, G., & Dassargues, A. (2008). Relating small-scale sedimentary structures and permeability in a cross-bedded aquifer. Journal of Hydrology, 361(1–2), 41–51.

    Article  Google Scholar 

  75. Ingebritsen, S. E., & Appold, M. S. (2012). The physical hydrogeology of ore deposits. Economic Geology, 107, 559–584. https://doi.org/10.2113/econgeo.107.4.559.

    Article  Google Scholar 

  76. Ingebritsen, S. E., Sanford, W. E., & Neuzil, C. E. (2006). Groundwater in geologic processes (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  77. Jeanneret, P., Goncalves, P., Durand, C., Trap, P., Marquer, D., Quirt, D., & Ledru, P. (2016). Tectono-metamorphic evolution of the pre-Athabasca basement within the Wollaston-Mudjatik Transition Zone, Saskatchewan. Canadian Journal of Earth Sciences, 53, 231–259.

    Article  Google Scholar 

  78. Jefferson, C.W., Thomas, D.J., Gandhi, S.S., Ramaekers, P., Delaney, G., Brisbin, D., Cutts, C., Quirt, D., Portella, P., & Olson, R.A. (2007a). Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. In: Jefferson, C.W. & Delaney, G. (Eds.), EXTECH IV: Geology and uranium exploration technology of the proterozoic Athabasca Basin, Saskatchewan and Alberta (Vol. 588, pp. 23–67). Geological Survey of Canada, Bulletin.

  79. Jefferson, C.W., Thomas, D., Quirt, D.H., Mwenifumbo, C.J., & Brisbin, D. (2007b). Empirical models for Canadian unconformity-associated uranium deposits. In Proceedings of the 5th decennial international conference on mineral exploration, Toronto, Ontario. Paper 51, 741–769.

  80. Jensen, J. L., Glasbey, C. A., & Corbett, P. W. M. (1994). On the interaction of geology, measurement, and statistical analysis of small-scale permeability measurements. Terra Nova, 6, 397–403.

    Article  Google Scholar 

  81. Jones, S. C. (1972). A rapid, accurate, unsteady-state Klinkenberg permeameter. SPE Journal, 12(5), 383–397.

    Google Scholar 

  82. Jones, S. C. (1997). A technique for faster pulse-decay permeability measurements in tight rocks. Journal of SPE Formation Evaluation, 12, 19–26.

    Article  Google Scholar 

  83. Kaczmarek, M. (2008). Approximate solutions for non-stationary gas permeability tests. Transport in Porous Media, 75, 151–165.

    Google Scholar 

  84. Kamineni, D. C., & Dugal, J. J. B. (1982). A study of rock alteration in the Eye-Dashwa Lakes Pluton, Atikokan, northwestern Ontario, Canada. Chemical Geology, 36, 35–57.

    Article  Google Scholar 

  85. Kerr, W.C. (2010). The Discovery of the Phoenix deposit: A new high-grade, Athabasca Basin unconformity-type uranium deposit, Saskatchewan, Canada. Society of Economic Geologists, Special Publication 15 (Chapter 34), 703–728.

  86. Kirkpatrick, J. D., Rowe, C. D., White, J. C., & Brodsky, E. E. (2013). Silica gel formation during fault slip: Evidence from the rock record. Geology, 41(9), 1015–1018.

    Article  Google Scholar 

  87. Kotzer, T. G., & Kyser, T. K. (1995). Petrogenesis of the Proterozoic Athabasca Basin, northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrogeology. Chemical Geology, 120, 45–89.

    Article  Google Scholar 

  88. Krzywinski, M., & Altman, N. (2014). Visualizing samples with box plots. Nature Methods, 11, 119–120.

    Article  Google Scholar 

  89. Kubo, T., Matsuda, N., Kashiwaya, K., Koike, K., Ishibashi, M., Tsuruta, T., et al. (2019). Characterizing the permeability of drillhole core samples of Toki granite, Central Japan, to identify factors influencing rock-matrix permeability. Engineering Geology, 259, 105163.

    Article  Google Scholar 

  90. Kuva, J., Voutilainen, M., Kekäläinen, P., Siitari-Kauppi, M., Timonen, J., & Koskinen, L. (2015). Gas phase measurements of porosity, diffusion coefficient and permeability in rock samples from Olkiluoto bedrock, Finland. Transport in Porous Media, 107(1), 187–204.

    Article  Google Scholar 

  91. Le Cheminant, A. N., & Heaman, L. M. (1989). Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth and Planetary Science Letter, 96, 38–48.

    Article  Google Scholar 

  92. Lechler, B.J. (2002). Gas permeameters: operation, modification, and design. MSc thesis, New Mexico Institute of Mining and Technology, Department of Earth and Environmental Science, Socorro, 119 pp. NMT Skeen Library. (Original from NMIMT scanned at McGill University Library, Montreal, 2018).

  93. Lenhard, R. J., & Parker, J. C. (1987). A model for hysteretic constitutive relations governing multiphase flow: 2. Permeability-saturation relations. Water Resources Research, 23, 2197–2206.

    Article  Google Scholar 

  94. Lewry, J. F., & Sibbald, T. (1977). Variation in lithology and tectonometamorphic relationships in the Precambrian basement of northern Saskatchewan. Canadian Journal of Earth Sciences, 14, 1453–1467.

    Article  Google Scholar 

  95. Lewry, J. F., & Sibbald, T. I. I. (1980). Thermotectonic evolution of the Churchill Province in northern Saskatchewan. Tectonophysics, 68, 45–82.

    Article  Google Scholar 

  96. Li, Z., Bethune, K. M., Chi, G., Bosman, S. A., & Card, C. D. (2015). Topographic features of the sub-Athabasca Group unconformity surface in the southeastern Athabasca Basin and their relationship to uranium ore deposits. Canadian Journal of Earth Sciences, 52, 903–920.

    Article  Google Scholar 

  97. Li, Z., Chi, G., & Bethune, K. (2016). The effects of basement faults on thermal convection and implications for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada. Geofluids, 16, 729–751. https://doi.org/10.1111/gfl.12180.

    Article  Google Scholar 

  98. Li, Z., Chi, G., Bethune, K. M., Eldursi, K., Quirt, D., Ledru, P., & Gudmundson, G. (2018). Numerical simulation of strain localization and its relationship to formation of the Sue unconformity-related uranium deposits, eastern Athabasca Basin, Canada. Ore Geology Reviews, 101, 17–31.

    Article  Google Scholar 

  99. Li, Z., Chi, G., Bethune, K. M., Eldursi, K., Thomas, D., Quirt, D., & Ledru, P. (2018). Synchronous egress and ingress fluid flow related to compressional reactivation of basement faults: the Phoenix and Gryphon uranium deposits, southeastern Athabasca Basin, Saskatchewan, Canada. Mineralium Deposita, 53, 277–292.

    Article  Google Scholar 

  100. Liang, Y., Price, J. D., Wark, D. A., & Watson, E. B. (2001). Nonlinear pressure diffusion in a porous medium: Approximate solutions with applications to permeability measurements using transient pulse decay method. Journal of Geophysical Research, 106(B1), 529–535.

    Article  Google Scholar 

  101. Little, T. A., Cox, S., Vry, J. K., & Batt, G. (2005). Variations in exhumation level and uplift rate along the oblique-slip Alpine fault, central Southern Alps, New Zealand. Geological Society of America Bulletin, 117(5), 707.

    Article  Google Scholar 

  102. Lockner, D., Tanaka, H., Ito, H., Ikeda, R., Omura, K., & Naka, H. (2009). Geometry of the Nojima Fault at Nojima-Hirabayashi, Japan – I. A Simple damage structure inferred from borehole core permeability. Pure and Applied Geophysics, 166, 1649–1667.

    Article  Google Scholar 

  103. Lockner, D. A., Morrow, C., Moore, D., & Hickman, S. (2011). Low strength of deep San Andreas fault gouge from SAFOD core. Nature, 472, 82–86.

    Article  Google Scholar 

  104. Lorilleux, G. (2001). Les Breches Associees Aux Gisements D'uranium De Type Discordance Du Bassin Athabasca (Saskatchewan, Canada). Doctoral dissertation, l'Institut National Polytechnique de Lorraine, Université Henri Poincaré Nancy, France. Available at https://hal.univ-lorraine.fr/tel-01749830/file/INPL_T_2001_LORILLEUX_G.pdf.

  105. MacDougall, D.G., & Heaman, L.M. (2002). Diabase sill complexes in northern Saskatchewan: Analogues for the lithoprobe Trans-Hudson Orogen Transect (THOT) Wollaston Lake S2b Reflector. Geological Association of Canada/Mineralogical Association of Canada, Annual Meeting, Saskatoon.

  106. Madore, C., & Annesley, I. R. (1997). Graphitic pelitic gneisses of the Paleoproterozoic Wollaston Group, Hearne Province, Saskatchewan. In H. Papunen (Ed.), Mineral deposits, Research and Exploration: Where do they meet? (pp. 79–82). Amsterdam: Balkema.

    Google Scholar 

  107. Marchesini, B., Garofalo, P. S., Menegon, L., Mattila, J., & Viola, G. (2019). Fluid-mediated, brittle–ductile deformation at seismogenic depth – Part 1: Fluid record and deformation history of fault veins in a nuclear waste repository (Olkiluoto Island, Finland). Solid Earth, 10, 809–838.

    Article  Google Scholar 

  108. Matsumoto, N., & Shigematsu, N. (2018). In-situ permeability of fault zones estimated by hydraulic tests and continuous groundwater-pressure observations. Earth, Planets and Space, 70(13), 1–12.

    Google Scholar 

  109. Mazurek, M., Jakob, A., & Bossart, P. (2003). Solute transport in crystalline rocks at Äspö–I: geological basis and model calibration. Journal of Contaminant Hydrology, 16(1–4), 157–174.

    Article  Google Scholar 

  110. McCready, A. J., Annesley, I. R., Cuney, M., Cavell, R. G., Derome, D., Rickers, K., et al. (2006). Further advancements in understanding uranium metallogenesis and fluid flow in the Athabasca Basin: New data from synchrotron analysis of fluid inclusions. Geological Association of Canada-Mineralogical Association of Canada meeting. Montreal. Abstracts, 31, 99–100.

    Google Scholar 

  111. McCready, A. J., Annesley, I. R., Parnell, J., & Richardson, L. C. (1999a). Morphology, chemistry, and origin of carbonaceous matter from the McArthur River deposit, Saskatchewan, Canada. In C. J. Stanley (Ed.), Mineral deposits: Processes to proscessing. Amsterdam: Balkema.

    Google Scholar 

  112. McCready, A.J., Annesley, I.R., Parnell, J., & Richardson, L.C. (1999b). Uranium-bearing carbonaceous matter, McArthur River uranium deposit, Saskatchewan. In: in Summary of Investigations 1999, Volume 2, Saskatchewan Geological Survey, Saskatchewan Energy and Mines, Miscellaneous Report 4(2), 110–120. Available at http://www.publications.gov.sk.ca/redirect.cfm?p=5031&i=88527.

  113. McKechnie, C. L., Annesley, I. R., & Ansdell, K. M. (2012). Radioactive abyssal granitic pegmatites and leucogranites in the Wollaston Domain, northern Saskatchewan, Canada: mineral compositions and conditions of emplacement in the Fraser Lakes area. The Canadian Mineralogist, 50, 1637–1667.

    Article  Google Scholar 

  114. Meier, D. B., Waber, H. N., Gimmi, T., Eichinger, F., & Diamond, L. W. (2015). Reconstruction of in-situ porosity and porewater compositions of low-permeability crystalline rocks: Magnitude of artefacts induced by drilling and sample recovery. Journal of Contaminant Hydrology, 183, 55–71.

    Article  Google Scholar 

  115. Menier, A., Roy, R., Harrison, G., Zerff, R. W., & Kinar, D. (2020). Relationship between rock physical properties and spectral mineralogy applied to exploration for an unconformity-related uranium deposit (Saskatchewan, Canada). Canadian Journal of Earth Sciences. https://doi.org/10.1139/cjes-2019-0080.

    Article  Google Scholar 

  116. Mercadier, J., Richard, A., Boiron, M.-C., Cathelineau, M., & Cuney, M. (2010). Migration of brines in the basement rocks of the Athabasca Basin through microfracture networks (P-Patch U deposit, Canada). Lithos, 115, 121–136.

    Article  Google Scholar 

  117. Mercadier, J., Cuney, M., Cathelineau, M., & Lacorde, M. (2011). U redox fronts and kaolinisation in basement-hosted unconformity-related U ores of the Athabasca Basin (Canada): late U remobilisation by meteoric fluids. Mineralia Deposita, 46, 105–135.

    Article  Google Scholar 

  118. Mercadier, J., Richard, A., & Cathelineau, M. (2012). Boron- and magnesium-rich marine brines at the origin of giant unconformity-related uranium deposits: δ11B evidence from Mg-tourmalines. Geology, 40(3), 231–234.

    Article  Google Scholar 

  119. Mercadier, J., Annesley, I. R., McKechnie, C. L., Bogdan, T. S., & Creighton, S. (2013). Magmatic and metamorphic uraninite mineralization in the western margin of the Trans-Hudson Orogen (Saskatchewan, Canada): A uranium source for unconformity-related uranium deposits? Economic Geology, 108(5), 1037–1065.

    Article  Google Scholar 

  120. Mercadier, J., Annesley, I.R., Verran, D., & Pascal, M. (2018). New U–Pb ages and geochemistry from the Wheeler River uranium deposits, Athabasca Basin, Canada. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018). Available at https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/097/49097538.pdf

  121. Mesri, G., & Olson, R. E. (1971). Mechanisms controlling the permeability of clays. Clays and Clay Minerals, 19, 151–158.

    Article  Google Scholar 

  122. Meunier, A., & Velde, B. (2004). Illite. Berlin: Springer. https://doi.org/10.1007/978-3-662-07850-1

    Google Scholar 

  123. Möller, C., Snäll, S., & Stephens, M.B. (2003). Dissolution of quartz, vug formation and new grain growth associated with post-metamorphic hydrothermal alteration in KFM02A. Report P-03-77, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. Available at http://skb.se/upload/publications/pdf/P-03-77webb.pdf.

  124. Molz, F. J., Dinwiddie, C. L., & Wilson, J. L. (2003). A physical basis for calculating instrument spatial weighting functions in homogeneous systems. Water Resources Research, 39(4), 1–14.

    Article  Google Scholar 

  125. Mondol, N. H., Bjørlykke, K., Jahren, J., & Høeg, K. (2007). Experimental mechanical compaction of clay mineral aggregates—changes in physical properties of mudstones during burial. Marine and Petroleum Geology, 24(5), 289–311.

    Article  Google Scholar 

  126. Morrow, C., & Byerlee, J. (1988). Permeability of rock samples from Cajon Pass, California. Geophysical Research Letters, 15(9), 1033–1036.

    Article  Google Scholar 

  127. Morrow, C. A., & Lockner, D. A. (1994). Permeability differences between surface-derived and deep drillhole core samples. Geophysical Research Letters, 21(19), 2151–2154.

    Article  Google Scholar 

  128. Mwenifumbo, C. J., Elliott, B. E., Jefferson, C. W., Bernius, G. R., & Pflug, K. A. (2004). Physical rock properties from the Athabasca Group: designing geophysical exploration models for unconformity uranium deposits. Journal of Applied Geophysics, 55, 117–135.

    Article  Google Scholar 

  129. Nara, Y., Kato, M., Niri, R., Kohno, M., Sato, T., Fukuda, D., et al. (2018). Permeability of granite including macro-fracture naturally filled with fine-grained minerals. Pure and Applied Geophysics, 175, 917–927.

    Article  Google Scholar 

  130. Ng, R., Alexandre, P., & Kyser, K. (2013). Mineralogical and geochemical evolution of the unconformity-related McArthur River Zone 4 orebody in the Athabasca Basin, Canada: Implications of a silicified zone. Economic Geology, 108(7), 1657–1689.

    Article  Google Scholar 

  131. Nishimoto, S., Yoshida, H., Asahara, Y., Tsuruta, T., Ishibashi, M., & Katsuta, N. (2014). Episyenite formation in the Toki granite, central Japan. Contributions to Mineralogy and Petrology, 167(960), 1–12.

    Google Scholar 

  132. Oliver, N. H. S., McLellan, J. G., Hobbs, B. E., Cleverley, J. S., Ord, A., & Feltrin, L. (2006). Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization. Economic Geology, 101, 1–31.

    Article  Google Scholar 

  133. Oohashi, K., Han, R., Hirose, T., Shimamoto, T., Omura, K., & Matsuda, T. (2014). Carbon-forming reactions under a reducing atmosphere during seismic fault slip. Geology, 42(9), 787–790.

    Article  Google Scholar 

  134. Ord, A., Hobbs, B. E., Zhang, Y., Broadbent, G. C., Brown, M., Willetts, G., et al. (2002). Geodynamic modelling of the Century deposit, Mt. Isa province, Queensland. Australian Journal of Earth Sciences, 49(6), 1011–1039.

    Article  Google Scholar 

  135. Pascal, M., Ansdell, K., Annesley, I. R., Kotzer, T., & Jiricka, D. (2016). Graphite-bearing pelitic schists and their altered equivalents in the Dufferin Lake Zone, south-central Athabasca Basin, Saskatchewan: Constraints on graphite formation and destruction, and implications for uranium mineralization. Canadian Mineralogist, 54, 1459–1491.

    Article  Google Scholar 

  136. Pek, A. A., & Malkovsky, V. I. (2016). Linked thermal convection of the basement and basinal fluids in formation of the unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada. Geofluids, 16, 925–940.

    Article  Google Scholar 

  137. Petersson, J., Stephens, M. B., Mattsson, H., & Möller, C. (2012). Albitization and quartz dissolution in Paleoproterozoic metagranite, central Sweden — Implications for the disposal of spent nuclear fuel in a deep geological repository. Lithos, 148, 10–26.

    Article  Google Scholar 

  138. Poty, B., & Pagel, M. (1988). Fluid inclusions related to uranium deposits: a review. Journal of the Geological Society, London, 145, 157–162.

    Article  Google Scholar 

  139. Prokof’ev, VYu., & Pek, A. A. (2015). Problems in estimation of the formation depth of hydrothermal deposits by data on pressure of mineralizing fluids. Geology of Ore Deposits, 57(1), 1–20.

    Article  Google Scholar 

  140. Quirt, D.H. (2003). Athabasca unconformity-type uranium deposits: one deposit type with many variations. In Proceedings of International Conference on Uranium Geochemistry, Nancy, France (pp. 309–312).

  141. Rainbird, R.H., Stern, R.A., Rayner, N., & Jefferson, C.W. (2007). Age, provenance, and regional correlation of the Athabasca Group, Saskatchewan and Alberta, constrained by igneous and detrital zircon geochronology. In C.W. Jefferson, & G. Delaney (Eds.), EXTECH IV: geology and uranium exploration technology of the proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada Bulletin (Vol. 588, pp. 193–209).

  142. Ramaekers, P., Jefferson, C. W., Yeo, G. M., Collier, B., Long, D. G. F., Drever, G., McHardy, S., Jiricka, D., Cutts, C., Wheatley, K., Catuneanu, O., Bernier, S., Kupsch, B., & Post, R.T. (2007). Revised geological map and stratigraphy of the Athabasca Group, Saskatchewan and Alberta. In: C.W. Jefferson & G. Delaney (Eds.), EXTECH IV: Geology and uranium exploration technology of the proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada Bulletin (Vol. 588, pp. 155–191).

  143. Renard, P., & Allard, D. (2013). Connectivity metrics for subsurface flow and transport. Advances in Water Resources, 51, 168–196.

    Article  Google Scholar 

  144. Richard, A., Banks, D. A., Mercadier, J., Boiron, M.-C., Cuney, M., & Cathelineau, M. (2011). An evaporated seawater origin for the ore-formingbrines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and d37Cl analysis of fluid inclusions. Geochimica et CosmochimicaActa, 75, 2792–2810. https://doi.org/10.1016/j.gca.2011.02.026.

    Article  Google Scholar 

  145. Richard, A., Rozsypal, C., Mercadier, J., Banks, D. A., Cuney, M., Boiron, M.-C., et al. (2012). Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nature Geoscience, 5, 142–146. https://doi.org/10.1038/ngeo1338.

    Article  Google Scholar 

  146. Richard, A., Cathelineau, M., Boiron, M.-C., Mercadier, J., Banks, D. A., & Cuney, M. (2016). Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada). Mineralium Deposita, 51, 249–270.

    Article  Google Scholar 

  147. Robert, F., Boullier, A. M., & Firdaous, K. (1995). Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. Journal of Geophysical Research, 100, 12861–12879.

    Article  Google Scholar 

  148. Rogiers, B., Winters, P., Huysmans, M., Beerten, K., Smeekens, T., Mallants, D., et al. (2014). High-resolution saturated hydraulic conductivity logging of borehole cores using air permeability measurements. Hydrogeology Journal, 22, 1345–1358.

    Article  Google Scholar 

  149. Rossovskiy, L. N., Konovalenko, S. I., & Bovin, Y. P. (1981). Desilicified pegmatites with dravite and corundum (Southwestern Pamir). International Geology Review, 23(4), 371–382.

    Article  Google Scholar 

  150. Sammaljärvi, J., Lindberg, A., Voutilainen, M., Voutilainen, M., Ikonen, J., Siitari-Kauppi, M., et al. (2017). Multi-scale study of the mineral porosity of veined gneiss and pegmatitic granite from Olkiluoto, Western Finland. Journal of Radioanalytical and Nuclear Chemistry, 314(3), 1557–1575.

    Article  Google Scholar 

  151. Sausse, J., Fourar, M., & Genter, A. (2006). Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis. Geothermics, 35, 544–560.

    Article  Google Scholar 

  152. Scibek, J. (2019). Global compilation and analysis of fault zone permeability. PhD Thesis, McGill University, Montreal, Canada. Available at https://escholarship.mcgill.ca/concern/theses/2n49t631d.

  153. Scibek, J. (2020). Multidisciplinary database of permeability of fault zones and surrounding protolith rocks at world-wide sites. Scientific Data, 7, 95.

    Article  Google Scholar 

  154. Scibek, J., Gleeson, T., & McKenzie, J. M. (2016). The biases and trends in fault zone hydrogeology conceptual models: global compilation and categorical data analysis. Geofluids, 16, 782–798.

    Article  Google Scholar 

  155. Seedorf, E., Dilles, J.H., Proffett, J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J. A., Johnson, D.A. and Barton, M.D. (2005). Porphyry deposits: characteristics and origin of hypogene features. In Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P. (Eds.). Economic Geology, 100th Anniversary Volume, 251–298.

  156. Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society of London, 133, 191–213.

    Article  Google Scholar 

  157. Sibson, R. H., Robert, F., & Poulsen, K. H. (1988). High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16(6), 551–555.

    Article  Google Scholar 

  158. Simmons, S.F., White, N.C., & John, D.A. (2005). Geological characteristics of epithermal precious and base metal deposits. In: In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P. (Eds.), Economic Geology, 100th Anniversary Volume, 485–522.

  159. Sopuck, V. J., de Carla, A., Wray, E. M., & Cooper, B. (1983). The application of lithogeochemistry in the search for unconformity-type uranium deposits, Northern Saskatchewan, Canada. Journal of Geochemical Exploration, 19, 77–99.

    Article  Google Scholar 

  160. Spitzer, M., Wildenhain, J., Appsilber, J., & Tyers, M. (2014). BoxPlotR: A web tool for generation of box plots. Nature Methods, 11, 121–122.

    Article  Google Scholar 

  161. Stober, I., & Bucher, K. (2015). Hydraulic conductivity of fractured upper crust: Insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks. Geofluids, 15, 161–178.

    Article  Google Scholar 

  162. Stoffregen, R. E. (1987). Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Economic Geology, 82(6), 1575–1591.

    Article  Google Scholar 

  163. Sutherland, W. J., Halvorsen, C., Hurst, A., McPhee, C. A., Robatson, G., Whattler, P. R., & Worthington, P. F. (1993). Recommended practice for probe permeametry. Marine and Petroleum Geology, 10(4), 309–317.

    Article  Google Scholar 

  164. Talbot, C. J., & Sirat, M. (2001). Stress control of hydraulic conductivity in fracture-saturated Swedish bedrock. Engineering Geology, 61, 145–153.

    Article  Google Scholar 

  165. Tanikawa, W., & Shimamoto, T. (2006). Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrological and Earth Systems Science Discussions, 3, 1315–1338.

    Google Scholar 

  166. Tartakovsky, D. M., Moulton, D. J., & Zlotnik, V. A. (2000). Kinematic structure of minipermeameter flow. Water Resources Research, 36(9), 2433–2442.

    Article  Google Scholar 

  167. Thébaud, N., Sugiono, D., LaFlamme, C., Miller, J., Fisher, L., Voute, F., & Fiorentini, M. (2018). Protracted and polyphased gold mineralisation in the Agnew District (Yilgarn Craton, Western Australia). Precambrian Research, 310, 291–304.

    Article  Google Scholar 

  168. Thomas, D. J., Matthews, R. B., & Sopuck, V. (2000). Athabasca Basin (Canada) unconformity-type uranium deposits: exploration model, current mine developments and exploration directions. In Proceedings of the Geological Society of Nevada Symposium, Reno/Sparks, Nevada, Vol. 1, 103–125. Available at https://www.gsnv.org/shop/athabasca-basin-canada-unconformity-type-uranium-deposits-exploration-model-current-mine-developments-and-exploration-directions/.

  169. Thomas, D., Aubin, A., Brisbin, D., Mukwakwami, J., Yang, H., & Zaluski, G. (2014) Fault architecture, associated structures and uranium mineralization, Eastern Athabasca Basin. SGS Open House Dec 2014, Presentation, 31pp., Cameco Corporation. Available at http://publications.gov.sk.ca/documents/310/95089-4_Thomas_Open_House_2014.pdf.

  170. Thury, M., Gautschi, Α., Mazurek, M., Müller, W.M., Naef, H., & Pearson et al (1994). Geology and hydrogeology of the crystalline basement of northern Switzerland. Nagra Technical Report NTB 93–01, Wettingen, Switzerland. Available at https://www.nagra.ch/en/cat/publikationen/technicalreports-ntbs/ntbs-1991-1993/downloadcentre.htm.

  171. Tidwell, V. C., & Wilson, J. L. (1997). Laboratory method for investigating permeability upscaling. Water Resources Research, 33(7), 1607–1616.

    Article  Google Scholar 

  172. Tidwell, V. C., Gutjahr, A. L., & Wilson, J. L. (1999). What does an instrument measure? Application of linear filter theory to characterize minpermeameter tests. Water Resources Research, 35, 43–54.

    Article  Google Scholar 

  173. Townend, J., & Zoback, M. D. (2000). How faulting keeps the crust strong. Geology, 28(5), 399–402.

    Article  Google Scholar 

  174. Tsang, C.-F., & Neretnieks, I. (1998). Flow channeling in heterogeneous fractured rocks. Reviews of Geophysics, 36(2), 275–298.

    Article  Google Scholar 

  175. Uehara, S., Shimamoto, T., Okazaki, K., Funaki, H., Kurikami, H., Niizato, T., & Ohnishi, Y. (2012). Can surface samples be used to infer underground permeability structure? A test case for a Neogene sedimentary basin in Horonobe, Japan. International Journal of Rock Mechanics & Mining Sciences, 56, 1–14.

    Article  Google Scholar 

  176. Viola, G., Zwingmann, H., Mattila, J., & Kapyaho, A. (2013). K-Ar illite age constraints on the Proterozoic formation and reactivation history of a brittle fault in Fennoscandia. Terra Nova, 25, 236–224. https://doi.org/10.1111/ter.12031.

    Article  Google Scholar 

  177. Voutilainen, M., Myllys, M., & Timonen, J. (2009). Structural and transport properties of illitized samples from drillhole OL-KR12 in Olkiluoto: porosity, diffusion coefficient, permeability and tomographic imaging. Working Report 2009–80. Posiva Oy, Eurajoki, Finland. Available at http://www.posiva.fi/files/1083/WR_2009-80web.pdf.

  178. Waber, H. N., Gimmi, T., & Smellie, J. A. T. (2009). Porewater in the rock matrix Site descriptive modelling SDM-Site Forsmark. SKB Report R-08-105, Swedish Nuclear Fuel and Waste Management Co., Stockholm. https://www.skb.se/publication/1962140/R-08-105.pdf.

  179. Waber, H. N., Gimmi, T., & Smellie, J. A. T. (2011). Effects of drilling and stress release on transport properties and porewater chemistry of crystalline rocks. Journal of Hydrology, 405(3–4), 316–332.

    Article  Google Scholar 

  180. Wallis, R., Saracoglu, N., Golightly, J., & Brummer, J. (1983). Geology of the McClean Uranium Deposits. In E. M. Cameron (Ed.), Uranium exploration in Athabasca Basin, Saskatchewan, Canada. Geological Survey of Canada, pp. 82–11, 71–110.

  181. Wang, K., Chia, G., Bethune, K. M., Lia, Z., Blamey, N., Card, C., et al. (2018). Fluid P-T-X characteristics and evidence for boiling in the formation of the Phoenix uranium deposit (Athabasca Basin, Canada): Implications for unconformity-related uranium mineralization mechanisms. Ore Geology Reviews, 101, 122–142.

    Article  Google Scholar 

  182. Warren, C. G., Granger, H. C., & Schock, J. H. (1980). Shape of roll-type uranium deposits. Open-File Report 80–100, U.S. Geological Survey. Available at https://pubs.usgs.gov/of/1980/0100/report.pdf.

  183. Weisenberger, T., & Bucher, K. (2011). Mass transfer and porosity evolution during low temperature water-rock interaction in gneisses of the simano nappe: Arvigo, Val Calanca, Swiss Alps. Contributions to Mineralogy and Petrology, 162, 61–81.

    Article  Google Scholar 

  184. Wibberley, C. A. J. (2002). Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth Planets Space, 54, 1153–1171.

    Article  Google Scholar 

  185. Wibberley, C. A. J., & Shimamoto, T. (2003). Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25, 59–78.

    Article  Google Scholar 

  186. Wilde, A. R., & Wall, V. J. (1987). Geology of the Nabarlek uranium deposit, Northern Territory, Australia. Economic Geology, 82, 1152–1168. https://doi.org/10.2113/gsecongeo.82.5.1152.

    Article  Google Scholar 

  187. Williams, R. T. (2019). Coseismic boiling cannot seal faults: Implications for the seismic cycle. Geology, 47(5), 461–464.

    Article  Google Scholar 

  188. Wilson, M. R., Kyser, T. K., Mehnert, H. H., & Hoeve, J. (1987). Changes in the H-O-Ar isotope composition of clays during retrograde alteration. Geochimica et Cosmochimica Acta, 51, 869–878.

    Article  Google Scholar 

  189. Woodcock, N. H., & Mort, K. (2008). Classification of fault breccias and related fault rocks. Geological Magazine, 145(3), 435–440.

    Article  Google Scholar 

  190. Yamamoto, K., Yoshida, H., Akagawa, F., Nishimoto, S., & Metcalfe, R. (2013). Redox front penetration in the fractured Toki Granite, central Japan: An analogue for redox reactions and redox buffering in fractured crystalline host rocks for repositories of long-lived radioactive waste. Applied Geochemistry, 35, 75–87.

    Article  Google Scholar 

  191. Yang, D., Wang, W., Chen, W., Tan, X., & Wang, L. (2019). Revisiting the methods for gas permeability measurement in tight porous medium. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 263–276.

    Article  Google Scholar 

  192. Yeo, G.M. & Delaney, G. (2007). The Wollaston supergroup, stratigraphy and metallogeny of a Paleoproterozoic Wilson cycle in the Trans-Hudson Orogen, Saskatchewan. In Jefferson, C.W. & Delaney, G. (Eds.), EXTECH IV: Geology and Uranium EXploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin, 588, 89–117.

  193. Yoshida, H., Metcalfe, R., Yamamoto, K., Murakami, Y., Hoshii, D., Kanekiyo, A., et al. (2008). Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste. Applied Geochemistry, 23, 2364–2381.

    Article  Google Scholar 

  194. Zhang, G., Wasyluk, K., & Pan, Y. (2001). The characterization and quantitative analysis of clay minerals in the Athabasca Basin, Saskatchewan: Application of shortwave infrared reflectance spectroscopy. The Canadian Mineralogist, 39, 1347–1363.

    Article  Google Scholar 

  195. Zharikov, A. V., Vitovtova, V. M., Shmonov, V. M., & Grafchikov, A. A. (2003). Permeability of the rocks from the Kola superdeep borehole at high temperature and pressure: implication to fluid dynamics in the continental crust. Tectonophysics, 370, 177–191.

    Article  Google Scholar 

Download references

Acknowledgments

The first author thanks Dr. Gleeson (U. Victoria) and Dr. McKenzie (McGill U.) for support. This work could not be done without help and support of Denison Mines. Geologists Dale Verran and Clark Gamelin provided comments on the early manuscript. Special thanks are to Dr. Bethune (U. Regina) for multiple and detailed reviews of this work and many suggestions for improvement of text and figures, many helpful edits and important questions. The manuscript was completed over a year while visiting for research at Kyoto University, Japan. Additional helpful comments about the permeability test methods were provided by Dr. Kubo, Dr. Koike, and Dr. Kashiwaya.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jacek Scibek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scibek, J., Annesley, I.R. Permeability Testing of Drill Core from Basement Rocks in the Fault-Hosted Gryphon U Deposit (Eastern Athabasca Basin, Canada): Insights into Fluid–Rock Interactions Related to Deposit Formation and Redistribution. Nat Resour Res (2021). https://doi.org/10.1007/s11053-021-09811-x

Download citation

Keywords

  • Permeability
  • Porosity
  • Permeameter
  • Fault zone
  • Hydrothermal alteration
  • Uranium deposit