A Coal Permeability Model with Variable Fracture Compressibility Considering Triaxial Strain Condition

Abstract

Fracture compressibility and strain boundary conditions are key factors in the evolution of coal permeability. Previous research has shown that fracture compressibility of coal is variable. Generally, the uniaxial strain condition is adopted for field coalbed methane (CBM) recovery. In this study, we assumed that the coal samples were under triaxial strain conditions combined with McKee’s stress-dependent fracture compressibility function and the improved Shi-Durucan permeability model. A new permeability model, with variable fracture compressibility, was derived. Considering variable fracture compressibility, the calculated results of the model were closer to the experimental values than the model with constant fracture compressibility. Based on previous experimental data, the responses of fracture compressibility to effective stress, gas pressure, gas type, and coal rank were analyzed. Coal fracture compressibility generally decreased with increase in effective stress. With increasing pore pressure, coal fracture compressibility first decreased and then increased when the experimental gas was CO2, CH4, or N2; it first increased and then decreased when the experimental gas was He. The stronger the adsorption capacity of the gas, the greater the coal fracture compressibility under uniform pore pressure. Numerical results of CBM production can be more accurate when the uniaxial and triaxial strain conditions are assumed for a coal seam far away from and near a wellhead, respectively.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Busch, A., Krooss, B. M., Gensterblum, Y., Van Bergen, F., & Pagnier, H. J. M. (2003). High-pressure adsorption of methane, carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behaviour. Journal of Geochemical Exploration, 78–79(03), 671–674. https://doi.org/10.1016/S0375-6742(03)00122-5.

    Article  Google Scholar 

  2. Chen, D., Pan, Z., Ye, Z., Hou, B., Wang, D., & Yuan, L. (2016). A unified permeability and effective stress relationship for porous and fractured reservoir rocks. Journal of Natural Gas Science and Engineering, 29, 401–412. https://doi.org/10.1016/j.jngse.2016.01.034.

    Article  Google Scholar 

  3. Chen, T., Feng, X. T., Cui, G., Tan, Y., & Pan, Z. (2019). Experimental study of permeability change of organic-rich gas shales under high effective stress. Journal of Natural Gas Science and Engineering, 64(January), 1–14. https://doi.org/10.1016/j.jngse.2019.01.014.

    Article  Google Scholar 

  4. Connell, L. D., & Detournay, C. (2009). Coupled flow and geomechanical processes during enhanced coal seam methane recovery through CO2 sequestration. International Journal of Coal Geology, 77(1–2), 222–233. https://doi.org/10.1016/j.coal.2008.09.013.

    Article  Google Scholar 

  5. Cui, X., & Bustin, R. M. (2005). Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bulletin, 89(9), 1181–1202. https://doi.org/10.1306/05110504114.

    Article  Google Scholar 

  6. Gensterblum, Y., Ghanizadeh, A., & Krooss, B. M. (2014). Gas permeability measurements on Australian subbituminous coals: Fluid dynamic and poroelastic aspects. Journal of Natural Gas Science and Engineering, 19, 202–214. https://doi.org/10.1016/j.jngse.2014.04.016.

    Article  Google Scholar 

  7. Gray, I. (1987). Reservoir engineering in coal seams: part 1 - the physical process of gas storage and movement in coal seams. SPE Reservoir Engineering (Society of Petroleum Engineers), 2(1), 28–34. https://doi.org/10.2118/12514-pa.

    Article  Google Scholar 

  8. Harpalani, S., & Chen, G. (1997). Influence of gas production induced volumetric strain on permeability of coal. Geotechnical and Geological Engineering, 15(4), 303–325. https://doi.org/10.1007/bf00880711.

    Article  Google Scholar 

  9. Huy, P. Q., Sasaki, K., Sugai, Y., & Ichikawa, S. (2010). Carbon dioxide gas permeability of coal core samples and estimation of fracture aperture width. International Journal of Coal Geology, 83(1), 1–10. https://doi.org/10.1016/j.coal.2010.03.002.

    Article  Google Scholar 

  10. Laubach, S. E., Marrett, R. A., Olson, I. E., & Scott, A. R. (1998). Characteristics and origins of coal cleat: A review. International Journal of Coal Geology, 35(1–4), 175–207. https://doi.org/10.1016/S0166-5162(97)00012-8.

    Article  Google Scholar 

  11. Li, J., Liu, D., Yao, Y., Cai, Y., & Chen, Y. (2013a). Evaluation and modeling of gas permeability changes in anthracite coals. Fuel, 111(September), 606–612. https://doi.org/10.1016/j.fuel.2013.03.063.

    Article  Google Scholar 

  12. Li, S., Tang, D., Pan, Z., Xu, H., & Huang, W. (2013b). Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance. Fuel, 111, 746–754. https://doi.org/10.1016/j.fuel.2013.05.003.

    Article  Google Scholar 

  13. Li, J., Liu, D., Yao, Y., Cai, Y., Xu, L., & Huang, S. (2014). Control of CO2 permeability change in different rank coals during pressure depletion: An experimental study. Energy & Fuels, 28(2), 987–996. https://doi.org/10.1021/ef402285n.

    Article  Google Scholar 

  14. Liu, J., Chen, Z., Elsworth, D., Miao, X., & Mao, X. (2010). Evaluation of stress-controlled coal swelling processes. International Journal of Coal Geology, 83(4), 446–455. https://doi.org/10.1016/j.coal.2010.06.005.

    Article  Google Scholar 

  15. Liu, J., Chen, Z., Elsworth, D., Qu, H., & Chen, D. (2011a). Interactions of multiple processes during CBM extraction: A critical review. International Journal of Coal Geology, 87(3–4), 175–189. https://doi.org/10.1016/j.coal.2011.06.004.

    Article  Google Scholar 

  16. Liu, J., Wang, J., Chen, Z., Wang, S., Elsworth, D., & Jiang, Y. (2011b). Impact of transition from local swelling to macro swelling on the evolution of coal permeability. International Journal of Coal Geology, 88(1), 31–40. https://doi.org/10.1016/j.coal.2011.07.008.

    Article  Google Scholar 

  17. Liu, T., Lin, B., & Yang, W. (2017). Impact of matrix–fracture interactions on coal permeability: Model development and analysis. Fuel, 207, 522–532. https://doi.org/10.1016/j.fuel.2017.06.125.

    Article  Google Scholar 

  18. Liu, T., Liu, S., Lin, B., Fu, X., Zhu, C., Yang, W., et al. (2020). Stress response during in situ gas depletion and its impact on permeability and stability of CBM reservoir. Fuel, 266(December 2019), 117083. https://doi.org/10.1016/j.fuel.2020.117083.

    Article  Google Scholar 

  19. Ma, Q., Harpalani, S., & Liu, S. (2011). A simplified permeability model for coalbed methane reservoirs based on matchstick strain and constant volume theory. International Journal of Coal Geology, 85(1), 43–48. https://doi.org/10.1016/j.coal.2010.09.007.

    Article  Google Scholar 

  20. Masoudian, M. S., Airey, D. W., & El-Zein, A. (2014). Experimental investigations on the effect of CO2 on mechanics of coal. International Journal of Coal Geology, 128–129, 12–23. https://doi.org/10.1016/j.coal.2014.04.001.

    Article  Google Scholar 

  21. McKee, C. R., Bumb, A. C., & Koenig, R. A. (1988). Stress-dependent permeability and porosity of coal and other geologic formations. SPE Formation Evaluation, 3(1), 81–91. https://doi.org/10.2118/12858-PA.

    Article  Google Scholar 

  22. Meng, Z., & Li, G. (2013). Experimental research on the permeability of high-rank coal under a varying stress and its influencing factors. Engineering Geology, 162, 108–117. https://doi.org/10.1016/j.enggeo.2013.04.013.

    Article  Google Scholar 

  23. Meng, Y., & Li, Z. P. (2015). Experimental study on the porosity and permeability of coal in net confining stress and its stress sensitivity. Meitan Xuebao/Journal of the China Coal Society, 40(1), 154–159. https://doi.org/10.13225/j.cnki.jccs.2013.1518.

    Article  Google Scholar 

  24. Meng, Y., & Li, Z. (2018). Experimental comparisons of gas adsorption, sorption induced strain, diffusivity and permeability for low and high rank coals. Fuel, 234(29), 914–923. https://doi.org/10.1016/j.fuel.2018.07.141.

    Article  Google Scholar 

  25. Meng, Y., Li, Z., & Lai, F. (2015). Experimental study on porosity and permeability of anthracite coal under different stresses. Journal of Petroleum Science and Engineering, 133, 810–817. https://doi.org/10.1016/j.petrol.2015.04.012.

    Article  Google Scholar 

  26. Meng, Y., Liu, S., & Li, Z. (2018). Experimental study on sorption induced strain and permeability evolutions and their implications in the anthracite coalbed methane production. Journal of Petroleum Science and Engineering, 164(29), 515–522. https://doi.org/10.1016/j.petrol.2018.01.014.

    Article  Google Scholar 

  27. Moore, T. A. (2012). Coalbed methane: A review. International Journal of Coal Geology, 101, 36–81. https://doi.org/10.1016/j.coal.2012.05.011.

    Article  Google Scholar 

  28. Palmer, I. (2009). Permeability changes in coal: Analytical modeling. International Journal of Coal Geology, 77(1–2), 119–126. https://doi.org/10.1016/j.coal.2008.09.006.

    Article  Google Scholar 

  29. Palmer, I., & Mansoori, J. (1998). How permeability depends on stress and pore pressure a new model. Langmuir, 1(6), 539–544.

    Google Scholar 

  30. Pan, Z., & Connell, L. D. (2009). Comparison of adsorption models in reservoir simulation of enhanced coalbed methane recovery and CO2 sequestration in coal. International Journal of Greenhouse Gas Control, 3(1), 77–89. https://doi.org/10.1016/j.ijggc.2008.05.004.

    Article  Google Scholar 

  31. Pan, Z., & Connell, L. D. (2011). Modelling of anisotropic coal swelling and its impact on permeability behaviour for primary and enhanced coalbed methane recovery. International Journal of Coal Geology, 85(3–4), 257–267. https://doi.org/10.1016/j.coal.2010.12.003.

    Article  Google Scholar 

  32. Pan, Z., & Connell, L. D. (2012). Modelling permeability for coal reservoirs: A review of analytical models and testing data. International Journal of Coal Geology, 92, 1–44. https://doi.org/10.1016/j.coal.2011.12.009.

    Article  Google Scholar 

  33. Peng, S., Fang, Z., Shen, J., Xu, J., & Wang, G. (2017a). Effects of gas sorption-induced swelling/shrinkage on the cleat compressibility of coal under different bedding directions. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-14678-1.

    Article  Google Scholar 

  34. Peng, Y., Liu, J., Pan, Z., Connell, L. D., Chen, Z., & Qu, H. (2017b). Impact of coal matrix strains on the evolution of permeability. Fuel, 189, 270–283. https://doi.org/10.1016/j.fuel.2016.10.086.

    Article  Google Scholar 

  35. Seidle, John P., & Huitt, L. G. (1995). Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases. Proceedings of the International Meeting on Petroleum Engineering, 2, 575–582. https://doi.org/10.2523/30010-ms.

    Article  Google Scholar 

  36. Seidle, J. P., Jeansonne, M. W., & Erickson, D. J. (1992). Application of matchstick geometry to stress dependent permeability in coals. Society of Petroleum Engineers. https://doi.org/10.2523/24361-ms.

    Article  Google Scholar 

  37. Shi, J. Q., & Durucan, S. (2004). Drawdown induced changes in permeability of coalbeds: A new interpretation of the reservoir response to primary recovery. Transport in Porous Media, 56(1), 1–16. https://doi.org/10.1023/B:TIPM.0000018398.19928.5a.

    Article  Google Scholar 

  38. Shi, J. Q., & Durucan, S. (2010). Exponential growth in San Juan Basin fruitland coalbed permeability with reservoir drawdown: Model match and new insights. SPE Reservoir Evaluation & Engineering, 13(6), 914–925. https://doi.org/10.2118/123206-PA.

    Article  Google Scholar 

  39. Shi, Ji Quan, Pan, Z., & Durucan, S. (2014). Analytical models for coal permeability changes during coalbed methane recovery: Model comparison and performance evaluation. International Journal of Coal Geology, 136, 17–24. https://doi.org/10.1016/j.coal.2014.10.004.

    Article  Google Scholar 

  40. Tan, Y., Pan, Z., Feng, X. T., Zhang, D., Connell, L. D., & Li, S. (2019). Laboratory characterisation of fracture compressibility for coal and shale gas reservoir rocks: A review. International Journal of Coal Geology, 204(January), 1–17. https://doi.org/10.1016/j.coal.2019.01.010.

    Article  Google Scholar 

  41. Vishal, V., Ranjith, P. G., & Singh, T. N. (2015). An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission. Journal of Natural Gas Science and Engineering, 22, 428–436. https://doi.org/10.1016/j.jngse.2014.12.020.

    Article  Google Scholar 

  42. Zhang, H., Liu, J., & Elsworth, D. (2008). How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1226–1236. https://doi.org/10.1016/j.ijrmms.2007.11.007.

    Article  Google Scholar 

  43. Zhang, S., Tang, S., Wan, Y., Li, Z., & Zhang, J. (2012). The migration of CH4 and CO2 in Jincheng anthracite coal. Journal of China University of Mining & Technology, 41(5), 770–775.

    Google Scholar 

  44. Zhang, J., Wei, C., Ju, W., Yan, G., Lu, G., Hou, X., et al. (2019a). Stress sensitivity characterization and heterogeneous variation of the pore-fracture system in middle-high rank coals reservoir based on NMR experiments. Fuel, 238(July 2018), 331–344. https://doi.org/10.1016/j.fuel.2018.10.127.

    Article  Google Scholar 

  45. Zhang, J., Wei, C., Zhao, J., Ju, W., Chen, Y., & Tamehe, L. S. (2019b). Comparative evaluation of the compressibility of middle and high rank coals by different experimental methods. Fuel, 245(February), 39–51. https://doi.org/10.1016/j.fuel.2019.01.052.

    Article  Google Scholar 

  46. Zheng, G., Pan, Z., Chen, Z., Tang, S., Connell, L., Zhang, S., et al. (2012). Laboratory study of gas permeability and cleat compressibility for CBM/ECBM in Chinese coals. Energy Exploration & Exploitation, 30(3), 451–476. https://doi.org/10.1260/0144-5987.30.3.451.

    Article  Google Scholar 

  47. Zhu, J., Zhang, M., Jiang, Y. D., & Tang, J. (2015). Experimental study of coal strain induced by carbon dioxide sorption/desorption. Meitan Xuebao/Journal of the China Coal Society, 40(5), 1081–1086. https://doi.org/10.13225/j.cnki.jccs.2014.0967.

    Article  Google Scholar 

  48. Zhu, J., Tang, J., Wang, Q., Lan, T., Lin, L., & Jiang, Y. (2019a). Study on the correlation between permeability and strain of coal samples under loading. Journal of China Coal Society. https://doi.org/10.13225/j.cnki.jccs.2019.1095.

    Article  Google Scholar 

  49. Zhu, J., Tang, J., Wang, Q., Wang, Q., Zhang, B., & Zhang, B. (2019b). Modeling and experimental analysis on the permeability evolution of coal containing methane. Journal of China Coal Society, 44(6), 1764–1770.

    Google Scholar 

  50. Zou, J., Chen, W., Yang, D., Yu, H., & Yuan, J. (2016). The impact of effective stress and gas slippage on coal permeability under cyclic loading. Journal of Natural Gas Science and Engineering, 31, 236–248. https://doi.org/10.1016/j.jngse.2016.02.037.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Nature Science Foundation of China (52074297) and the Fundamental Research Funds for the Central Universities (2020YJSLJ06). We thank LetPub for its linguistic assistance during the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Zhu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhu, J., Shao, T. et al. A Coal Permeability Model with Variable Fracture Compressibility Considering Triaxial Strain Condition. Nat Resour Res (2021). https://doi.org/10.1007/s11053-020-09793-2

Download citation

Keywords

  • Coal permeability
  • Fracture compressibility
  • Effective stress
  • Coalbed methane
  • Triaxial strain conditions