A Combination of Geostatistical Methods and Principal Components Analysis for Detection of Mineralized Zones in Seafloor Hydrothermal Systems

Abstract

Seafloor massive sulfide (SMS) deposits are typical of submarine mineral resources and generally rich in base metals (Cu, Pb, Zn); however, their distribution, configuration, and formation mechanism, especially sub-seafloor mineralization, remain poorly understood because of scant drilling and geophysical data. To address this problem, this study aims to identify and characterize mineralized zones in seafloor hydrothermal areas using limited metal content data from sparse drilling sites. We use principal component analysis to decrease the dimensionality of the content data. High metal content zones are delineated using principal component values by three geostatistical methods: (1) spatial estimation using ordinary kriging; (2) turning bands simulations (TBSIM); and (3) sequential Gaussian simulations. We selected an active seafloor vent area at 1570 m below sea level in the Okinawa Trough, southwest Japan, as a case study. Results from the three methods show two types of high metal content zones: One is around a sulfide mound, and the other is layered in association with lateral flow of hydrothermal fluids from the bottom of the mound. TBSIM is the most effective under scarce data conditions because the model yields the smallest cross-validation error, decreases the smoothing effect, and corresponds well to a conceptual deposit model that shows a stockwork below the sulfide mound. The results contribute to better understanding the formation mechanism of SMS deposits as well as constraining submarine metal reserves and mining.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Fig. 7
Figure 8

References

  1. Aitchison, J. (1986). The statistical analysis of compositional data, monographs on statistics and applied probability. London: Chapman & Hall.

    Google Scholar 

  2. Aitchison, J. (2002). Simplicial inference. In M. A. G. Viana & D. S. P. Richards (Eds.), Algebraic methods in statistics and probability (Vol. 287)., Contemporary Mathematics Series Rhode Island: American Mathematical Society.

    Google Scholar 

  3. Armstrong, M. (1998). Basic linear geostatistics. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-58727-6.

    Google Scholar 

  4. Asakawa, E., Murakami, F., Tara, K., Shutaro, S., Tsukahara, H., & Lee, S. (2018). Multi-stage seismic survey for seafloor massive sulphide (SMS) exploration. In Conference: OCEANS’18 MTS/IEEE Kobe/Techno-Ocean 2018, Kobe, Japan.

  5. Battalgazy, N., & Madani, N. (2019). Categorization of mineral resources based on different geostatistical simulation algorithms: A case study from an iron ore deposit. Natural Resources Research,28(4), 329–1351.

    Article  Google Scholar 

  6. Bowen, G. J. (2010). Isoscapes: Spatial pattern in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences,38, 161–187.

    Article  Google Scholar 

  7. Calder, C. A., & Cressie, N. (2009). Kriging and variogram models. International Encyclopedia of Human Geography. https://doi.org/10.1016/b978-008044910-4.00461-2.

    Article  Google Scholar 

  8. Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty. New York: Wiley.

    Google Scholar 

  9. Chilès, J.-P., & Lantuéjoul, C. (2005). Prediction by conditional simulation: Models and algorithms. In M. Bilodeau, F. Meyer, & M. Schmitt (Eds.), Space, structure and randomness: Contributions in honor of Georges Matheron in the field of geostatistics, random sets and mathematical morphology (pp. 39–68). New York: Springer. https://doi.org/10.1007/0-387-29115-6.

    Google Scholar 

  10. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and user’s guide. New York: Oxford University Press.

    Google Scholar 

  11. Egozcue, J. J., & Pawlowsky-Glahn, V. (2011). Basic concepts and procedures. In V. Pawlowsky-Glahn & A. Buccianti (Eds.), Compositional data analysis: Theory and applications (pp. 12–28). Chichester: Wiley.

    Google Scholar 

  12. Emery, X. (2004). Testing the correctness of the sequential algorithm for simulating Gaussian random fields. Stochastic Environmental Research and Risk Assessment,18(6), 401–413.

    Article  Google Scholar 

  13. Emery, X. (2007). Conditioning simulations of Gaussian random fields by ordinary kriging. Mathematical Geology,39(6), 607–623.

    Article  Google Scholar 

  14. Emery, X. (2008). A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields. Computers & Geosciences,34(12), 1850–1862.

    Article  Google Scholar 

  15. Emery, X., & Lantuéjoul, C. (2006). TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Computers & Geosciences,32(10), 1615–1628.

    Article  Google Scholar 

  16. Eze, P. N., Madani, N., & Adoko, A. C. (2018). Multivariate mapping of heavy metals spatial contamination in a Cu–Ni exploration field (Botswana) using turning bands co-simulation algorithm. Natural Resources Research,28(1), 109–124.

    Article  Google Scholar 

  17. Glasby, G. P., & Notsu, K. (2003). Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: An overview. Ore Geology Reviews,23(3–4), 299–339.

    Article  Google Scholar 

  18. Gneiting, T. (1999). The correlation bias for two-dimensional simulations by turning bands. Mathematical Geology,31(2), 195–211.

    Google Scholar 

  19. Halbach, P., Nakamura, K.-I., Wahsner, M., Lange, J., Sakai, H., Käselitz, L., et al. (1989). Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature,338, 496–499.

    Article  Google Scholar 

  20. Halbach, P., Pracejus, B., & Marten, A. (1993). Geology and mineralogy of massive sulfide ores from the Central Okinawa Trough, Japan. Economic Geology,88, 2210–2225.

    Article  Google Scholar 

  21. Herzig, P. M., & Hannington, M. D. (1995). Polymetallic massive sulfides at the modern seafloor. A review. Ore Geology Reviews,10, 95–115.

    Article  Google Scholar 

  22. Ilyas, A., Kashiwaya, K., & Koike, K. (2016). Ni grade distribution in laterite characterized from geostatistics, topography and the paleo-groundwater system in Sorowako, Indonesia. Journal of Geochemical Exploration,165, 174–188.

    Article  Google Scholar 

  23. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  24. Ishibashi, J.-I., Ikegami, F., Tsuji, T., & Urube, T. (2015). Hydrothermal activity in Okinawa Trough back-arc basin: Geological background and hydrothermal mineralization. In J. I. Ishibashi, K. Okino, & M. Sunamura (Eds.), Subseafloor biosphere linked to hydrothermal systems: TAIGA concept (pp. 337–359). Tokyo: Springer. https://doi.org/10.1007/978-4-431-54865-2.

    Google Scholar 

  25. Ishizu, K., Goto, T. N., Ohta, Y., Kasaya, T., Iwamoto, H., Vachiratienchai, C., et al. (2019). Internal structure of a seafloor massive sulfide deposit by electrical resistivity tomography. Okinawa Trough, Geophysical Research Letters,46, 11025–11035.

    Article  Google Scholar 

  26. Iskandar, I., Koike, K., & Sendjaja, P. (2012). Identifying groundwater arsenic contamination mechanisms in relation to arsenic concentrations in water and host rocks. Environmental Earth Sciences,65, 2015–2026.

    Article  Google Scholar 

  27. Jewbali, A., & Dimitrakopoulos, R. (2011). Implementation of conditional simulation by successive residuals. Computers & Geosciences,37(2), 129–142.

    Article  Google Scholar 

  28. Kato, Y. (1990). Geology and topography on the ridge south of the active hydrothermal deposits of the Izena Hole –the results of diving survey in 1989. JAMSTEC Deep Sea Research,6, 27–31. (in Japanese with English abstract).

    Google Scholar 

  29. Kato, Y., Nakamura, K., Iwabuchi, Y., Hashimoto, J., & Kaneko, Y. (1989). Geology and topography in the Izena Hole of the middle Okinawa Trough—The results of diving surveys in 1987 and 1988. JAMSTEC Deep Sea Research,5, 163–182. (in Japanese with English abstract).

    Google Scholar 

  30. Koike, K., Kubo, T., Liu, C., Masoud, A. A., Amano, K., Kurihara, A., et al. (2015). 3D geostatistical modeling of fracture system in a granitic massif to characterize hydraulic properties and fracture distribution. Tectonophysics,660(7), 1–16.

    Article  Google Scholar 

  31. Lantuéjoul, C. (1994). Non conditional simulation of stationary isotropic multigaussian random functions. In M. Armstrong & P. A. Dowd (Eds.), Geostatistical simulations (pp. 147–177). Dordrecht: Springer.

    Google Scholar 

  32. Lu, L., Kashiwaya, K., & Koike, K. (2016). Geostatistics-based regional characterization of groundwater chemistry in a sedimentary rock area with faulted setting. Environment Earth Sciences,75, 829.

    Article  Google Scholar 

  33. Lydon, J. W. (1988). Volcanogenic massive sulphide deposits: I. A descriptive model. In: Roberts, R. G., & Sheanan, P. A. (Eds.), Ore deposit models (pp. 14–56), Geoscience Canada, Reprint Series 3.

  34. Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability,5(3), 439–468.

    Article  Google Scholar 

  35. Nozaki, T., Ishibashi, J.-I., Shimada, K., et al. (2016). Rapid growth of mineral deposits at artificial seafloor hydrothermal vents. Scientific Reports,6, 22163.

    Article  Google Scholar 

  36. Nozaki, T., Takaya, Y., Nagase, T., Yamasaki, T., Ishibashi, J.-I., Kumagai, H., Maeda, L., & CK16-05 Cruise Members (2018). Subseafloor mineralization at the Izena Hole, Okinawa Trough from the aspect of drill cores obtain by the CK16-05 Cruise (Exp. 909). Conference: Goldshmidt2018, Boston, U.S.A.

  37. Ohmoto, H. H. (1996). Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geology Reviews,10, 135–177.

    Article  Google Scholar 

  38. Olea, R. A. (1999). Geostatistics for engineers and earth scientists. Dordrecht: Kluwer.

    Google Scholar 

  39. Paravarzar, S., Emery, X., & Madani, N. (2015). Comparing sequential Gaussian and turning bands algorithms for cosimulating grades in multi-element deposits. Comptes Rendus - Geoscience,347(2), 84–93.

    Article  Google Scholar 

  40. Pawlowsky-Glahn, V., & Olea, R. A. (2004). Geostatistical analysis of compositional data, International Association for Mathematical Geosciences., Studies in mathematical geosciences New York: Oxford University Press.

    Google Scholar 

  41. Pirajno, F. (2009). Hydrothermal processes and mineral systems. Berlin: Springer. https://doi.org/10.1007/978-1-4020-8613-7.

    Google Scholar 

  42. Pugliese, A., Farmer, W. H., Castellarin, A., Archfield, S. A., & Vogel, R. M. (2016). Regional flow duration curves: Geostatistical techniques versus multivariate regression. Advances in Water Resources,96, 11–22.

    Article  Google Scholar 

  43. Pyrcz, M. J., & Deutsch, C. V. (2014). Geostatistical reservoir modelling. New York: Oxford University Press.

    Google Scholar 

  44. Ren, W. (2005). Short note on conditioning turning bands realizations. Centre for Computational Geostatistics, Report Five, University of Alberta, 405-1–11.

  45. Robb, L. (2004). Introduction to ore-forming processes. Oxford: Blackwell Publishing.

    Google Scholar 

  46. Rona, P. A., Hannington, M. D., Raman, C. V., Thompson, G., Tivey, M. K., Humphris, S. E., et al. (1993). Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid Atlantic Ridge. Economic Geology,88, 1989–2018.

    Article  Google Scholar 

  47. Shahbeik, S., Afzal, P., Moarefvand, P., & Qumarsy, M. (2014). Comparison between ordinary kriging (OK) and inverse distance weighted (IDW) based on estimation error. Case study: Dardevey iron ore deposit, NE Iran. Arabian Journal of Geosciences,7(9), 3693–3704.

    Article  Google Scholar 

  48. Shanks, W. C. P., III, & Thurston, R. (2012). Volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070–C.

  49. Swan, A. R. H., & Sandilands, M. (1995). Introduction to geological data analysis. Oxford: Blackwell Science.

    Google Scholar 

  50. Takaya, Y., Yasukawa, K., Kawasaki, T., et al. (2018). The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports,8, 5763.

    Article  Google Scholar 

  51. Tornos, F., Peter, J. M., Allen, R., & Conde, C. (2015). Controls on the siting and style of volcanogenic massive sulphide deposits. Ore Geology Reviews,68, 142–163.

    Article  Google Scholar 

  52. Totsuka, S., Shimada, K., Nozaki, T., Kimura, J. I., Chang, Q., & Ishibashi, J.-I. (2019). Pb isotope compositions of galena in hydrothermal deposits obtained by drillings from active hydrothermal fields in the middle Okinawa Trough determined by LA-MC-ICP-MS. Chemical Geology, 514, 90–104. https://doi.org/10.1016/j.chemgeo.2019.03.024

    Article  Google Scholar 

  53. Yamasaki, T. (2018). The role of bimodal magmatism in seafloor massive sulfide (SMS) ore-forming systems at the middle Okinawa Trough, Japan. Ocean Science Journal,53, 413–436.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Next-generation technology for ocean resources exploration” (Funding agency: Japan Agency for Marine-Earth Science and Technology, JAMSTEC). We thank captain, crew, and onboard members of the cruise CK16-05 (Exp. 909). Sincere thanks are extended to Glen Nwaila for valuable comments and suggestions that helped improve the clarity of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katsuaki Koike.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Sá, V.R., Koike, K., Goto, T. et al. A Combination of Geostatistical Methods and Principal Components Analysis for Detection of Mineralized Zones in Seafloor Hydrothermal Systems. Nat Resour Res (2020). https://doi.org/10.1007/s11053-020-09705-4

Download citation

Keywords

  • Metal content
  • Principal components analysis
  • Ordinary kriging
  • Turning bands simulation
  • Sequential Gaussian simulation
  • Okinawa Trough