Magnetic Data Interpretation Using a New R-Parameter Imaging Method with Application to Mineral Exploration

Abstract

A new imaging method has been developed for elucidating the observed magnetic data gauged along profile. The method is based on the calculation of the correlation factor (the R-parameter) between the analytic signal of the measured magnetic anomaly and the analytic signal of the calculated response of some geometrically simple interpretive models in the confined category of sheets, cylinders, and spheres. The characteristic parameters (amplitude coefficient, depth, location, approximative shape of the buried structure, and effective angle of magnetization) of the interpretive model correspond to the maximum R-parameter value. The scheme has been verified on a number of noise-free synthetic examples and recovered the actual model parameters. Prior to applying the developed scheme to real-field examples, the accuracy of it has been carefully investigated on synthetic examples which are contaminated with realistic noise levels, interference effects, and regional field. Finally, the method has been successfully applied to three real-field data examples from the USA, Senegal, and Egypt for mineral exploration, and it is found that the obtained results are in good concordance with those obtained from drilling and/or the published literature.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

References

  1. Abdelrahman, E. M., Abo-Ezz, E. R., & Essa, K. S. (2012). Parametric inversion of residual magnetic anomalies due to simple geometric bodies. Exploration Geophysics, 43, 178–189.

    Google Scholar 

  2. Abdelrahman, E. M., Abo-Ezz, E. R., Soliman, K. S., El-Araby, T. M., & Essa, K. S. (2007b). A least-squares window curves method for interpretation of magnetic anomalies caused by dipping dikes. Pure and Applied Geophysics, 164, 1027–1044.

    Google Scholar 

  3. Abdelrahman, E. M., El-Araby, H. M., El-Araby, T. M., & Essa, K. S. (2002). A numerical approach to depth determination from magnetic data. Kuwait Journal of Science and Engineering, 29, 121–134.

    Google Scholar 

  4. Abdelrahman, E. M., El-Araby, T. M., & Essa, K. S. (2003). A least-squares minimisation approach to depth, index parameter, and amplitude coefficient determination from magnetic anomalies due to thin dykes. Exploration Geophysics, 34, 241–248.

    Google Scholar 

  5. Abdelrahman, E. M., El-Araby, T. M., Soliman, K. S., Essa, K. S., & Abo-Ezz, E. R. (2007a). Least-squares minimization approaches to interpret total magnetic anomalies due to spheres. Pure and Applied Geophysics, 164, 1045–1056.

    Google Scholar 

  6. Abdelrahman, E. M., & Essa, K. S. (2005). Magnetic interpretation using a least-squares, depth-shape curves method. Geophysics, 70, L23–L30.

    Google Scholar 

  7. Abdelrahman, E. M., & Essa, K. S. (2015). A new method for depth and shape determinations from magnetic data. Pure and Applied Geophysics, 172, 439–460.

    Google Scholar 

  8. Abo-Ezz, E. R., & Essa, K. S. (2016). A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula. Pure and Applied Geophysics, 173, 1265–1278.

    Google Scholar 

  9. Al-Garni, M. A. (2011). Spectral analysis of magnetic anomalies due to a 2-D horizontal circular cylinder: A Hartley transforms technique. SQU Journal for Science, 16, 45–56.

    Google Scholar 

  10. Al-Garni, M. A. (2015). Interpretation of magnetic anomalies due to dipping dikes using neural network inversion. Arabian Journal of Geosciences, 8, 8721–8729.

    Google Scholar 

  11. Archer, C. T., & Reid, A. B. (2016). Shooting fish in a barrel? Using VTEM for gold exploration in Sierra Leone, 1st Conference on Geophysics for Mineral Exploration and Mining. Near Surface Geoscience, 1–5.

  12. Asfahani, J., & Tlas, M. (2007). A robust nonlinear inversion for the interpretation of magnetic anomalies caused by faults, thin dikes and sphere like structure using stochastic algorithms. Pure and Applied Geophysics, 164, 2023–2042.

    Google Scholar 

  13. Atchuta Rao, D. A., & Ram Babu, H. V. (1980). Properties of the relation figures between the total, vertical, and horizontal field magnetic anomalies over a long horizontal cylinder ore body. Current Science, 49, 584–585.

    Google Scholar 

  14. Augusto, P. A., Castelo-Grande, T., Merchan, L., Estevez, A. M., Quintero, X., & Barbosa, D. (2019). Landfill leachate treatment by sorption in magnetic particles: Preliminary study. Science of the Total Environment, 648, 636–668.

    Google Scholar 

  15. Balkaya, C., Ekinci, Y. L., & Gktrler, G. (2013). 3D inversion of magnetic data by differential evolution algorithm. In 20th The international geophysical congress & exhibition of Turkey, 25–27 November, Antalya (pp. 134–137).

  16. Balkaya, C., Ekinci, Y. L., Gktrkler, G., & Turan, S. (2017). 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. Journal of Applied Geophysics, 136, 372–386.

    Google Scholar 

  17. Biswas, A., & Acharya, T. (2016). A very fast simulated annealing (VFSA) method for inversion of magnetic anomaly over semi-infinite vertical rod-type structure. Modeling Earth Systems and Environment, 2, 198.

    Google Scholar 

  18. Biswas, A., Parija, M. P., & Kumar, S. (2017). Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Annals of Geophysics, 60, G0218. https://doi.org/10.4401/ag-7129.

    Article  Google Scholar 

  19. Clifton, R. (2017). Rapid depth estimation for compact magnetic sources using a semi-automated spectrum-based method. Exploration Geophysics, 48, 284. https://doi.org/10.1071/EG15118.

    Article  Google Scholar 

  20. Cooper, G. R. J. (2016). Applying the tiltdepth and contactdepth methods to the magnetic anomalies of thin dykes. Geophysical Prospecting, 65, 316–323.

    Google Scholar 

  21. Domra Kana, J., Djongyang, N., Radandi, D., Nouck, P. N., & Dadj, A. (2016). A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews, 44, 87–95.

    Google Scholar 

  22. Dondurur, D., & Pamuku, O. A. (2003). Interpretation of magnetic anomalies from dipping dike model using inverse solution, power spectrum and Hilbert transform methods. Journal of Balkan Geophysical Society, 6, 127–139.

    Google Scholar 

  23. Ekinci, Y. L. (2016). MATLAB based algorithm to estimate depths of isolated thin dike like sources using higher order horizontal derivatives of magnetic anomalies. SpringerPlus, 5, 1384. https://doi.org/10.1186/s40064-016-3030-7.

    Article  Google Scholar 

  24. Elkhadragy, A. A., Ali, M. S. A., Abdelmohsen, G. N. G., & Ahmed, A. E. (2018). Airborne magnetic data interpretation to delineate the subsurface structure of Qena-Quseir Shear Zone Area, Eastern Desert, Egypt. Global Journal of Science Frontier Research: (H) Environment & Earth Science, 18(1), 1–15.

    Google Scholar 

  25. Essa, K. S., & Elhussein, M. (2017). A new approach for the interpretation of magnetic data by a 2-D dipping dike. Journal of Applied Geophysics, 136, 431–443.

    Google Scholar 

  26. Essa, K. S., & Elhussein, M. (2018). PSO (particle swarm optimization) for interpretation of magnetic anomalies caused by simple geometrical structures. Pure and Applied Geophysics, 175, 3539–3553.

    Google Scholar 

  27. Essa, K. S., & Elhussein, M. (2019). Magnetic interpretation utilizing a new inverse algorithm for assessing the parameters of buried inclined dike-like geologic structure. Acta Geophysica, 67, 533–544.

    Google Scholar 

  28. Essa, K. S., & Elhussein, M. (2020). Interpretation of magnetic data through particle swarm optimization: Mineral exploration cases studies. Natural Resources Research, 29, 521–537.

    Google Scholar 

  29. Essa, K. S., Nady, A. G., Mostafa, M. S., & Elhussein, M. (2018). Implementation of potential field data to depict the structural lineaments of the Sinai Peninsula, Egypt. Journal of African Earth Sciences, 147, 43–53.

    Google Scholar 

  30. Essa, K. S., Sharafeldin, S. M., & Hesham, A. (2017). Magnetic, seismic and petrophysical studies for delineating the prospects at Ras Fanar, Gulf of Suez, Egypt. Transylvanian Review, XXV, 5859–5873.

    Google Scholar 

  31. Eventov, L. (1997). Applications of magnetic methods in oil and gas exploration. The Leading Edge, 16, 489–492.

    Google Scholar 

  32. FitzGerald, D., Reid, A. B., & McInerney, P. (2004). New discrimination techniques for Euler deconvolution. Computers & Geosciences, 30, 461–469.

    Google Scholar 

  33. Gay, P. (1963). Standard curves for interpretation of magnetic anomalies over long tabular bodies. Geophysics, 28, 161–200.

    Google Scholar 

  34. Gay, P. (1965). Standard curves for the interpretation of magnetic anomalies over long horizontal cylinders. Geophysics, 30, 818–828.

    Google Scholar 

  35. Hajian, A., Zomorrodian, H., & Styles, P. (2012). Simultaneous estimation of shape factor and depth of subsurface cavities from residual gravity anomalies using feed-forward back-propagation neural networks. Acta Geophysica, 60, 1043–1075.

    Google Scholar 

  36. Hinze, W. J. (1990). The role of gravity and magnetic methods in engineering and environmental studies. Geotechnical and Environmental Geophysics, 1, 75–126.

    Google Scholar 

  37. Innocent, A. J., Chidubem, E. O., & Chibuzor, N. A. (2019). Analysis of aeromagnetic anomalies and structural lineaments for mineral and hydrocarbon exploration in Ikom and its environs southeastern Nigeria. Journal of African Earth Sciences, 151, 274–285.

    Google Scholar 

  38. Kaftan, I. (2017). Interpretation of magnetic anomalies using a genetic algorithm. Acta Geophysica, 65, 627–634.

    Google Scholar 

  39. Kushwaha, N., Pant, M., Kant, S., & Jain, V. K. (2018). Magnetic optimization algorithm for data clustering. Pattern Recognition Letters, 115, 59–65.

    Google Scholar 

  40. Linford, N., Linford, P., & Payne, A. (2019). Advanced magnetic prospecting for archaeology with a vehicle-towed array of cesium magnetometers. Innovation in Near-Surface Geophysics, 5, 121–149.

    Google Scholar 

  41. Liu, S., Hu, X., Liu, T., Xi, Y., & Zhang, H. (2015). Ant colony optimization inversion of surface and borehole magnetic data under lithological constraints. Journal of Applied Geophysics, 112, 115–128.

    Google Scholar 

  42. Ma, G., & Li, L. (2013). Depth and structural index estimation of 2D magnetic source using correlation coefficient of analytic signal. Journal of Applied Geophysics, 91, 9–13.

    Google Scholar 

  43. Ma, G., Liu, C., Xu, J., & Meng, Q. (2017). Correlation imaging method based on local wavenumber for interpreting magnetic data. Journal of Applied Geophysics, 138, 17–22.

    Google Scholar 

  44. Mandal, A., Mohanty, W. K., Sharma, S. P., Biswas, A., Sen, J., & Bhatt, A. K. (2014). Geophysical signatures of uranium mineralization and its subsurface validation at Beldih, Purulia District, West Bengal, India: A case study. Geophysical Prospecting, 63, 713–726.

    Google Scholar 

  45. McGrath, P. H., & Hood, P. J. (1970). The dipping dike case: A computer curve matching method of magnetic interpretation. Geophysics, 35, 831–848.

    Google Scholar 

  46. Mehanee, S. A., & Essa, K. S. (2015). 2.5D regularized inversion for the interpretation of residual gravity data by a dipping thin sheet: Numerical examples and case studies with an insight on sensitivity and non-uniqueness. Earth, Planets and Space, 67, 130.

    Google Scholar 

  47. Mehanee, S. A., & Zhdanov, M. (2002). Two-dimensional magnetotelluric inversion of blocky geoelectrical structures. Journal of Geophysical Research-Solid Earth,. https://doi.org/10.1029/2001JB000191.

    Article  Google Scholar 

  48. Mohan, N. L., Sunderarajan, N., & Seshagiri Rao, S. V. (1982). Interpretation of some two dimensional magnetic bodies using Hilbert transform. Geophysics, 47, 376–387.

    Google Scholar 

  49. Montesinos, F. G., Blanco-Monegro, I., & Arnoso, J. (2016). Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm. Physics of the Earth and Planetary Interiors, 253, 74–87.

    Google Scholar 

  50. Munschy, M., Boulanger, D., Ulrich, P., & Bouiflane, M. (2007). Magnetic mapping for the detection and characterization of UXO: Use of multi-sensor fluxgate 3-axis magnetometers and methods of interpretation. Journal of Applied Geophysics, 61, 168–183.

    Google Scholar 

  51. Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.

    Google Scholar 

  52. Nettleton, L. L. (1976). Gravity and magnetics in oil prospecting. New York: McGraw Hill Book Co.

    Google Scholar 

  53. Piskarev, A. L., & Tchernyshev, M. Y. (1997). Magnetic and gravity anomaly patterns related to hydrocarbon fields in northern West Siberia. Geophysics, 62, 831–841.

    Google Scholar 

  54. Prakasa Rao, T. K. S., & Subrahmanyam, M. (1988). Characteristic curves for inversion of magnetic anomalies of spherical ore bodies. Pure and Applied Geophysics, 126, 69–83.

    Google Scholar 

  55. Prakasa Rao, T. K. S., Subrahmanyam, M., & Srikrishna Murthy, A. (1986). Nomograms for the direct interpretation of magnetic anomalies due to long horizontal cylinders. Geophysics, 51, 215–2159. https://doi.org/10.1190/1.1442067.

    Article  Google Scholar 

  56. Rao, B. S. R., Murthy, I. V. R., & Rao, C. V. (1973). Computer program for interpreting vertical magnetic anomalies of spheres and horizontal cylinders. Pure and Applied Geophysics, 110, 2056–2065.

    Google Scholar 

  57. Rao, B. S. R., Prakasa Rao, T. K. S., & Krishna Murthy, A. S. (1977). A note on magnetized spheres. Geophysical Prospecting, 25, 746–757. https://doi.org/10.1111/j.1365-2478.1977.tb01201.x.

    Article  Google Scholar 

  58. Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55, 80–91.

    Google Scholar 

  59. Reid, A. B., Ebbing, J., & Webb, S. J. (2014). Avoidable Euler errors—The use and abuse of Euler deconvolution applied to potential fields. Geophysical Prospecting, 62, 1162–1168.

    Google Scholar 

  60. Robinson, D. A., Binley, A., Crook, N., Day-Lewis, F. D., Ferr, T. P. A., Grauch, V. J. S., et al. (2008). Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrological Processes, 22, 3604–3635.

    Google Scholar 

  61. Salem, A. (2005). Interpretation of magnetic data using analytic signal derivatives. Geophysical Prospecting, 53, 75–82.

    Google Scholar 

  62. Salem, A. (2011). Multi-deconvolution analysis of potential field data. Journal of Applied Geophysics, 74, 151–156.

    Google Scholar 

  63. Salem, A., Aboud, E., Elsirafy, A., & Ushijima, K. (2005). Structural mapping of Quseir area, northern Red Sea, Egypt, using high-resolution aeromagnetic data. Earth, Planets and Space, 57, 761–765.

    Google Scholar 

  64. Salem, A., Elsirafi, A., & Ushijima, K. (1999). Design and application of high-resolution aeromagnetic survey over Gebel Duwi area and its offshore extension, Egypt. Memoirs of the Faculty of Engineering, Kyushu University, 59, 201–213.

    Google Scholar 

  65. Salem, A., Williams, S., Fairhead, J. D., Ravat, D., & Smith, R. (2007). Tilt depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 26, 1502–1505.

    Google Scholar 

  66. Shaw, R. K., & Agarwal, N. P. (1990). The application of Walsh transform to interpret gravity anomalies due to some simple geometrically shaped causative sources: A feasibility study. Geophysics, 55, 843–850.

    Google Scholar 

  67. Subrahmanyam, M., & Prakasa Rao, T. K. S. (2009). Interpretation of magnetic anomalies using simple characteristics positions over tabular bodies. Exploration Geophysics, 40, 265–276.

    Google Scholar 

  68. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Philadelphia: SIAM.

    Google Scholar 

  69. Thompson, D. T. (1982). EULDPHa new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.

    Google Scholar 

  70. Tlas, M., & Asfahani, J. (2011). Fair function minimization for interpretation of magnetic anomalies due to thin dikes, spheres and faults. Journal of Applied Geophysics, 75, 23–243.

    Google Scholar 

  71. Werner, S. (1953). Interpretation of magnetic anomalies of sheet-like bodies. Norstedt, Sveriges Geolologiska Undersok, Series C, Arsbok, 43, no. 6.

  72. Xiong, J., & Zhang, T. (2015). Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data. Applied Geophysics, 12, 127–136.

    Google Scholar 

  73. Zhdanov, M. S. (2002). Geophysical inversion theory and regularization problems. Amsterdam: Elsevier.

    Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. John Carranza, Editor-in-Chief, and three careful reviewers for their helpful comments, which improved and guided our paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zein E. Diab.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehanee, S., Essa, K.S. & Diab, Z.E. Magnetic Data Interpretation Using a New R-Parameter Imaging Method with Application to Mineral Exploration. Nat Resour Res 30, 77–95 (2021). https://doi.org/10.1007/s11053-020-09690-8

Download citation

Keywords

  • Magnetic data interpretation
  • R-parameter imaging method
  • Analytic signal
  • Mineral exploration