Skip to main content

Advertisement

Log in

Sampling Density in Regional Exploration and Environmental Geochemical Studies: A Review

  • Review Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

A variety of factors contribute to the proper and efficient evaluation of geochemical programs including sampling medium, sample size and sample fraction, sampling density, digestion procedure, and analytical techniques. Among the aforementioned factors, sampling density is of great importance, affecting project ability to detect anomalous sites, which are either economically viable or environmentally hazardous. It is quite critical to have a sufficient number of samples to delineate geochemical anomalies or baselines and to reveal the relative variations in elemental concentrations in a study area. The resolution of the subsequent maps obtained by sampling greatly depends on sampling density. While a large number of samples may generate redundant data, a small number of samples smooth out the patterns and may completely miss anomalies. This review provides a platform for applied geochemists who desire to design a sampling scheme for a regional geochemical program and do not have the financial resources to perform an orientation survey, which will give them the necessary information for designing, according to project objectives, a cost-effective regional geochemical survey for their study area. It is advisable to integrate during the desktop study all available information, such as geological, structural, geophysical, remote sensing data and topographical data by using different data fusion algorithms to arrive at a sampling density fit-for-purpose of the target area. This in turn facilitates an effective spatial positioning of sample locations. Quantitative analyses of the efficiency of different sampling densities for delineating geochemical patterns have not been well documented, warranting more attention and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Source: Moon et al. (2006)

Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Albanese, S., Fontaine, B., Chen, W., Lima, A., Cannatelli, C., Piccolo, A., et al. (2015). Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: The Campania Plain (Southern Italy) case study. Environmental Geochemistry and Health, 37(1), 1–20.

    Article  Google Scholar 

  • Albanese, S., Iavazzo, P., Adamo, P., Lima, A., & De Vivo, B. (2013). Assessment of the environmental conditions of the Sarno river basin (south Italy): A stream sediment approach. Environmental Geochemistry and Health, 35(3), 283–297.

    Article  Google Scholar 

  • Alipour, S. (1996). Geochemistry and morphology of lag in the Cobar Region of New South Wales and its application in mineral exploration. Ph.D. thesis, University of New South Wales (unpublished).

  • Appleton, J. D., & Llanos, J. A. (1985). The geochemical atlas of Eastern Bolivia. Keyworth: British Geological Survey.

    Google Scholar 

  • Appleton, J. D., & Ridway, J. (1994). Drainage geochemistry in tropical rain forest terrains. In H. Hale & J. A. Plant (Eds.), Drainage geochemistry, handbook of exploration geochemistry. New York: Elsevier.

    Google Scholar 

  • Armour-Brown, A., & Nichol, I. (1970). Regional geochemical reconnaissance and the location of metallogenic provinces. Economic Geology, 65(3), 312–330.

    Article  Google Scholar 

  • Barthelemy, F., Kassa Mombo, M., & Labbe, J. F. (1987). Inventaire minier transgabonais: Campagnes geochimiques regionales et detaillees 1979–1986. Acquisition des donnees sur le terrain (Abstract). In 12th International geochemical exploration symposium, Orleans, France. Programme and Abstracts, B.R.G.M, Orleans, p. 159.

  • Batista, M. J., Demetriades, A., Pirc, S., De Vos, W., Bidovec, M., & Martins, L. (2006). Factor analysis interpretation of European soil, stream and floodplain sediment data. Annex 5. In: De Vos, W., Tarvainen, T., Salminen, R., Reeder, S., De Vivo, B.,Demetriades, A., Pirc, S., Batista, M. J., Marsina, K., Ottesen, R. T., O’Connor, P. J., Bidovec, M., Lima, A., Siewers, U., Smith, B., Taylor, H., Shaw, R., Salpeteur, I., Gregorauskiene, V., Halamic, J., Slaninka, I., Lax, K., Gravesen, P., Birke, M., Breward, N., Ander, E. L., Jordan, G., Duris, M., Klein, P., Locutura, J., Bel-lan, A., Pasieczna, A., Lis, J., Mazreku, A., Gilucis, A., Heitzmann, P., Klaver, G., Petersell, V. (Eds.), Geochemical atlas of Europe. Part 2Interpretation of geochemical maps, additional tables, figures, maps, and related publications (pp. 567–617). Geological Survey of Finland, Espoo.

  • Birke, M., & Rauch, U. (1993). Environmental aspects of the regional geochemical survey in the southern part of East Germany. Journal of Geochemical Exploration, 49(1–2), 35–61.

    Article  Google Scholar 

  • Birke, M., Rauch, U., & Raschka, M. (2008). Geochemischer Atlas von Deutschland. Berichte der geologischen Bundesanstalt, Wien, 77, 13–15.

    Google Scholar 

  • Birke, M., Rauch, U., Raschka, H., Wehner, H., Kringel, R., Gäbler, H.-E., Kriete, C., Siewers, U., & Kantor, W. (2006). Geochemischer Atlas Bundesrepublik Deutschland—Verteilung anorganischer und organischer Parameter in Oberflächenwässern und Bachsedimenten. Vorabexemplar (unpublished).

  • Birke, M., Rauch, U., & Stummeyer, J. (2015). How robust are geochemical patterns? A comparison of low and high sample density geochemical mapping in Germany. Journal of Geochemical Exploration, 154, 105–128.

    Article  Google Scholar 

  • Bölviken, B. (1990). Long term storage of samples. In: Bölviken, B., Demetriades, A., Hindel, R., Locutura, J., O‘Connor, P., Ottesen, R. T., Plant, J., Ridgway, L., Salminen, R., Salpeteur, I., Schermann, O., & Volden, T. (Eds). Geochemical mapping of Wemn Europe towards the year 2000, project proposal. Geological Survey of Norway Open File Report 90-106, Appendix 7.

  • Bölviken, B., Bergstriim, J., Bjiirklund, A., Kontio, M., Lehmus-Pelto, P., Lindholm, T., Magnusson. J., Ottesen. R. T., Steen-felt, A., & Volden, T. (1986). Geochemical atlas of Northern Fennoscandia. Uppsala: Geological Survey of Sweden.

    Google Scholar 

  • Bölviken, B., Bogen, J., Demetriades, A., De Vos, W., Ebbing, J., Hindel, R., et al. (1996). Regional geochemical mapping of Western Europe towards the year 2000. Journal of Geochemical Exploration, 56(2), 141–166.

    Article  Google Scholar 

  • Bölviken, B., Kullerud, G., & Loucks, R. R. (1990). Geochemical and metallogenic provinces: A discussion initiated by results from geochemical mapping across Northern Fennoscandia. Journal of Geochemical Exploration, 39(1–2), 49–90.

    Article  Google Scholar 

  • Bölviken, B., Stokke, P. R., Feder, J., & Jbssang, T. (1992). The fractal nature of geochemical landscapes. Journal of Geochemical Exploration, 43, 91–109.

    Article  Google Scholar 

  • Bradshaw, P. M. D., Clews, D. R., & Walker, J. L. (1972). Exploration geochemistry. A series of seven articles reprinted from Mining in Canada and Canadian Mining Journal. Rexdale, ON: Barringer Research Ltd.

    Google Scholar 

  • Buccianti, A., Lima, A., Albanese, S., Cannatelli, C., Esposito, R., & De Vivo, B. (2015). Exploring topsoil geochemistry from the CoDA (Compositional Data Analysis) perspective: The multi-element data archive of the Campania Region (Southern Italy). Journal of Geochemical Exploration, 159, 302–316.

    Article  Google Scholar 

  • Buccianti, A., Lima, A., Albanese, S., & De Vivo, B. (2018). Measuring the change under compositional data analysis (CoDA): Insight on the dynamics of geochemical systems. Journal of Geochemical Exploration, 189, 100–108.

    Article  Google Scholar 

  • Butt, C. R. M., & Nichol, I. (1979). The identification of various types of geochemical stream sediment anomalies in Northern Ireland. Journal of Geochemical Exploration, 11, 13–32.

    Article  Google Scholar 

  • Carranza, E. J. M. (2004). Usefulness of stream order to detect stream sediment geochemical anomalies. Geochemistry: Exploration, Environment, Analysis, 4, 341–352.

    Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectively mapping in GIS. Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2010). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis, 10, 171–187.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (1997). A catchment basin approach to the analysis of reconnaissance geochemical–geological data from Albay Province, Philippines. Journal of Geochemical Exploration, 60(2), 157–171.

    Article  Google Scholar 

  • Carver, R. N., Chenoweth, L. M., Mazzucchelli, R. H., Oates, C. J., & Robbins, T. W. (1987). “Lag”—A geochemical sampling medium for arid regions. Journal of Geochemical Exploration, 28, 183–199.

    Article  Google Scholar 

  • Chaffee, M. A. (1976). The zonal distribution of selected elements above the Kalamazoo porphyry copper deposit, San Manuel district, Pinal County, Arizona. Journal of Geochemical Exploration, 5, 145–165.

    Article  Google Scholar 

  • Chen, X., Zheng, Y., Xu, R., Wang, H., Jiang, X., Yan, H., et al. (2016). Application of classical statistics and multifractals to delineate Au mineralization-related geochemical anomalies from stream sediment data: A case study in Xinghai-Zeku, Qinghai, China. Geochemistry: Exploration, Environment, Analysis, 16(3–4), 253–264.

    Google Scholar 

  • Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65, 175–194.

    Article  Google Scholar 

  • Cheng, Z., Xie, X., Yao, W., Feng, J., Zhang, Q., & Fang, J. (2014). Multi-element geochemical mapping in Southern China. Journal of Geochemical Exploration, 139, 183–192.

    Article  Google Scholar 

  • Chiprés, J. A., Salinas, J. C., Castro-Larragoitia, J., & Monroy, M. G. (2008). Geochemical mapping of major and trace elements in soils from the Altiplano Potosino, Mexico: A multiscale comparison. Geochemistry: Exploration, Environment, Analysis, 8, 279–290.

    Google Scholar 

  • Chu, L.H., Muntanion, S., Sidik, Bin, A., Chand, F., & Troup, A. (1982). Regional geochemistry of South Kelantan. Geological Survey of Malaysia, Geochemical Report 1.

  • Cicchella, D., Giaccio, L., Dinneli, E., Albanese, S., Lima, A., Zuzolo, D., et al. (2015). GEMAS: Spatial distribution of chemical elements in agricultural and grazing land soil of Italy. Journal of Geochemical Exploration, 154, 129–142.

    Article  Google Scholar 

  • Cicchella, D., Lima, A., Birke, M., Demetriades, A., Yao, W., Xie, X., et al. (2013). Mapping geochemical patterns distribution at large scale using composite samples to reduce the analytical costs. Journal of Geochemical Exploration, 124, 79–91.

    Article  Google Scholar 

  • Cocker, M. D. (1999). Geochemical mapping in Georgia, USA: A tool for environmental studies, geologic mapping and mineral exploration. Journal of Geochemical Exploration, 67(1), 345–360.

    Article  Google Scholar 

  • Cohen, D. R., & Bowell, R. J. (2014). Exploration geochemistry. In S. D. Scott (Ed.), Treatise on geochemistry (2nd ed., Vol. 13(24), pp. 624–649). Oxford: Elsevier.

    Google Scholar 

  • Cohen, D. R., Rutherford, N. F., Morisse, A. E., & Zissimos, A. M. (2011). Geochemical atlas of cyprus. Sydney: UNSW Press Ltd.

    Google Scholar 

  • Cohen, D. R., Rutherford, N. F., Morisseau, E., Christoforou, E., & Zissimos, A. M. (2012). Anthropogenic vs. lithological influences on soil geochemical patterns in Cyprus. Geochemistry: Exploration, Environment, Analysis, 12(4), 349–360.

    Google Scholar 

  • Cohen, D. R., Silva-Santisteban, C. M., Rutherford, N. F., Garnett, D. L., & Waldron, H. M. (1999). Comparison of biogeochemical and stream sediment geochemical patterns in the north eastern region of NSW. Journal of Geochemical Exploration, 66, 469–489.

    Article  Google Scholar 

  • Coker, W. B. (2010). Future research directions in exploration geochemistry. Geochemistry: Exploration, Environment, Analysis, 10, 3–16.

    Google Scholar 

  • Dahlberg, E. H. (1982). Geochemical investigation of magnetic and electromagnetic anomalies in the upper Nickerie copper-rare earth mineralization area, Suriname. In: Lamming, D. J. C., & Gibbs, A. K. (Eds.), Hidden Wealth: Mineral exploration techniques in tropical forest areas. AGID Rep. 7, pp. 95–109.

  • Darnley, A. G., Bjorklund, A., Bolviken, B., Koval, P. V., Plant, J. A., Steenfelt, A., Tauchid, M., & Xie, X. (1995). A global geochemical database for environmental and resource management. UNESCO Earth Sciences Series 19, Paris, France.

  • Darwish, M. A. G., & Poellmann, H. (2010). Geochemical exploration for gold in the Nile Valley block (A) area, Wadi Allaqi, South Egypt. Chemie der Erde-Geochemistry, 70(4), 353–362.

    Article  Google Scholar 

  • Day, S. J., & Fletcher, W. K. (1989). Effects of valley and local channel morphology on the distribution of gold in stream sediments from Harris Creek, BC, Canada. Journal of Geochemical Exploration, 32, 1–16.

    Article  Google Scholar 

  • de Caritat, P., & Cooper, M. (2011). National Geochemical Survey of Australia: The Geochemical Atlas of Australia. Record 2011/020. Geoscience Australia http://dx.doi.org/10.11636/Record.2011.020 (Canberra).

  • de Caritat, P., & Cooper, M. (2016). A continental-scale geochemical atlas for resource exploration and environmental management: The National Geochemical Survey of Australia. Geochemistry: Exploration, Environment, Analysis, 16(1), 3–13.

    Google Scholar 

  • De Vivo, B., Lima, A., Bove, M. A., Albanese, S., Cicchella, D., Sabatini, G., et al. (2008). Environmental geochemical maps of Italy from the FOREGS database. Geochemistry: Exploration, Environment, Analysis, 8(3–4), 267–277.

    Google Scholar 

  • De Vos, W., Tarvainen, T., Salminen, R., Reeder, S., De Vivo, B., Demetriades, A., et al. (2006). Geochemical Atlas of Europe: Part 2: Interpretation of geochemical maps, additional tables, figures, maps, and related publications. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Demetriades, A. (2014). Basic considerations: Sampling, the key for a successful applied geochemical survey for mineral exploration and environmental purposes. Chapter 15.1. In: McDonough, W. F. (Eds.), Analytical geochemistry/inorganic instrument analysis. In: Holland, H. D., & Turekian, K. K. (Executive Editors), Treatise on Geochemistry (Vol. 15, pp. 1–31). Elsevier, Oxford.

  • Demetriades, A., Birke, M., Albanese, S., Schoeters, I., De Vivo, B., Demetriades, A., et al. (2015). Continental, regional and local scale geochemical mapping. Journal of Geochemical Exploration, 154, 1–5.

    Article  Google Scholar 

  • Demetriades, A., Ottesen, R. T., & Locutura, J. (Eds.). (1990). Geochemical mapping of Western Europe towards the year 2000. Pilot Project Report. Western European Geological Surveys. Open File Report 90.105, 9 pages and 10 appendices. Trondheim: Geological Survey of Norway.

    Google Scholar 

  • Demetriades, A., Smith, D. B., Wang, X. (2018). General concepts of geochemical mapping at global, regional, and local scales for mineral exploration and environmental purposes. In: Licht, O. A. B. (Ed.), Geochemical Mapping Special Issue, Geochimica Brasiliensis (Vol. 32, No. 2, pp. 136–179).

  • Fauth, H., Hindel, R., Siewers, U., & Zinner, J. (1985). Geochemischer Atlas Bundesrepublik Deutschland (Vol. 185). Hannover: Federal Office for Geosciences and Raw Materials. (German and English).

    Google Scholar 

  • Ferreira, A., Inácio, M. M., Morgado, P., Batista, M. J., Ferreira, L., Pereira, V., et al. (2001). Low-density geochemical mapping in Portugal. Applied Geochemistry, 16(11), 1323–1331.

    Article  Google Scholar 

  • Fordyce, F. M., Green, P. M., & Simpson, P. R. (1993). Simulation of regional geochemical survey maps at variable sample density. Journal of Geochemical Exploration, 49, 161–175.

    Article  Google Scholar 

  • Forgeron, D. (1979). Regional stream sediment geochemical reconnaissance of Swaziland. Geological Survey and Mines Department.

  • Friske, P. W. B., & Hornbrook, E. H. W. (1991). Canada’s National Geochemical Reconnaissance Programme. Transactions of the Institution of Mining and Metallurgy (Section B: Applied Earth Science), 100, B47–B56.

    Google Scholar 

  • Gandhi, S. M., & Sarkar, B. C. (2016). Essentials of mineral exploration and Evaluation. Amsterdam: Elsevier.

    Google Scholar 

  • Garousi Nezhad, S., Mokhtari, A. R., & Rodsari, P. R. (2017). The true sample catchment basin approach in the analysis of stream sediment geochemical data. Ore Geology Reviews, 83, 127–134.

    Article  Google Scholar 

  • Garrett, R. G. (1966). Regional geochemical reconnaissance of Eastern Sierra Leone. Ph.D. thesis, Imperial College, University of London.

  • Garrett, R. G. (1977). Sampling density investigations in lake sediment geochemical surveys of Canada’s Uranium Reconnaissance Program. In: Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Symposium. Open File Report, GJBX-77 (77) (pp. 173–185). US Department of Energy.

  • Garrett, R. G. (1983). Sampling methodology. In R. J. Howarth (Ed.), Handbook of exploration geochemistry. Statistics and data analysis in geochemical prospecting (Vol. 2, pp. 83–110). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Garrett, R. G., Banville, R. M., & Adcock, S. W. (1990). Regional geochemical data compilation and map preparation, Labrador, Canada. Journal of Geochemical Exploration, 39(1–2), 91–116.

    Article  Google Scholar 

  • Garrett, R. G., & Goss, T. I. (1980). The statistical appraisal of survey effectiveness in regional geochemical surveys for Canada’s Uranium Reconnaissance Program. Mathematical Geology, 12(5), 443–458.

    Article  Google Scholar 

  • Garrett, R. G., Lalor, G. C., & Vutchkov, M. (2004). Geochemical exploration for gold in Jamaica: A comparison of stream sediment and soil surveys. Geochemistry: Exploration, Environment, Analysis, 4(2), 161–170.

    Google Scholar 

  • Garrett, R. G., & Nichol, I. (1967). Regional geochemical reconnaissance in eastern Sierra Leone. Transactions of the Institution of Mining and Metallurgy (Section B: Applied Earth Science), 76, B97–B112.

    Google Scholar 

  • Garrett, R. G., Reimann, C., Smith, D. B., & Xie, X. (2008). From geochemical prospecting to international geochemical mapping: A historical overview. Geochemistry: Exploration, Environment, Analysis, 8, 205–217.

    Google Scholar 

  • Ginzburg, I. I. (1960). Principles of geochemical prospecting (Translation from Russian). Oxford: Pergamon Press.

    Google Scholar 

  • Gosar, M., Šajn, R., & Teršič, T. (2016). Distribution pattern of mercury in the Slovenian soil: Geochemical mapping based on multiple geochemical datasets. Journal of Geochemical Exploration, 167, 38–48.

    Article  Google Scholar 

  • Halamić, J., Peh, Z., Miko, S., Galović, L., & Šorša, A. (2012). Geochemical atlas of Croatia: Environmental implications and geodynamical thread. Journal of Geochemical Exploration, 115, 36–46.

    Article  Google Scholar 

  • Haldar, S. K. (Eds.). (2013). Chapter 4—Exploration geochemistry. In Mineral exploration (pp. 55–71). Amsterdam: Elsevier.

  • Hale, M., & Plant, J. A. (Eds.). (1994). Drainage geochemistry. In Govett, G. J. S. (Series Editor), Handbook of exploration geochemistry (Vol. 6). Amsterdam: Elsevier.

  • Hallenstein, C. P., Pedersen, J. L., & Stendal, H. (1981). Exploration for scheelite in East Greenland—A case study. Journal of Geochemical Exploration, 15, 381–392.

    Article  Google Scholar 

  • Hamidsyah, H., & Clarke, M. C. G. (1982). Discovery of primary tungsten and tin mineralization in N. Sumatra, Indonesia. In Proceedings, Tungsten Geology Symposium, China (pp. 49–58). ESCAP RMRDC, Bandung.

  • Harraz, H. Z., Hamdy, M. M., & El-Mamoney, M. H. (2012). Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in Barramiya gold mine, Eastern Desert, Egypt. Journal of African Earth Sciences, 68, 1–14.

    Article  Google Scholar 

  • Hawkes, H. E. (1954). Geochemical prospecting investigations in the Nyeba lead-zinc district, Nigeria (No. 1000). Washington: US Government Printing Office.

    Google Scholar 

  • Hawkes, H. E. (1976). The downstream dilution of stream sediment anomalies. Journal of Geochemical Exploration, 6, 345–358.

    Article  Google Scholar 

  • Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32, 1283–1298.

    Article  Google Scholar 

  • Hornbrook, E. H. W., & Garrett, R. G. (1976). Regional geochemical lake sediment survey, East-Central Saskatchewan. Geological Survey of Canada Paper 75-41.

  • Horton, R. E. (1945). Erosional development of stream sand their drainage basins; Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.

    Article  Google Scholar 

  • Howarth, R. J. (Ed.). (1983). Statistics and data analysis in geochemical prospecting (Vol. 2). Handbook of exploration geochemistry. Amsterdam: Elsevier.

    Google Scholar 

  • James, C. H. (1957). Applied geochemical studies in Southern Rhodesia and Great Britain. Ph.D. thesis, University of London.

  • Johnson, C. C. (2005). G-BASE field procedures manual (p. 130). Nottingham, Keyworth: British Geological Survey.

    Google Scholar 

  • Johnson, J. (2006). Onshore energy security program underway. AusGeo News, 84. http://www.ga.gov.au/ausgeonews/ausgeonews200612/onshore.jsp. Accessed 10 Sep 2017.

  • Kadunas, V., Budavicius, R., Gregorauskiene, V., Katinas, V., Kliaugiene, E., Radzevicius, A., et al. (1999). Geochemical atlas of Lithuania. Vilnius, Lithuania: Geological Institute.

    Google Scholar 

  • Koljonen, T. (1992). The geochemical atlas of Finland, Part 2: Till. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Lahermo, P., Ilmasti, M., Juntunen, R., & Taka, M. (1990). The geochemical atlas of Finland, Part 1: The hydrogeochemical mapping of Finnish groundwater. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Lahermo, P., Väänänen, P., Tarvainen, T., & Salminen, R. (1996). Geochemical atlas of Finland, Part 3: Environmental geochemistry—Stream waters and sediments (Vol. 3). Espoo: Geological Survey of Finland. (in Finnish with English summary).

    Google Scholar 

  • Lancianese, V., & Dinelli, E. (2015). Different spatial methods in regional geochemical mapping at high density sampling: An application on stream sediments of Romagna Apennines, Northern Italy. Journal of Geochemical Exploration, 154, 143–155.

    Article  Google Scholar 

  • Lapworth, D. J., Knights, K. V., Key, R. M., Johnson, C. C., Ayoade, E., Adekanmi, M. A., et al. (2012). Geochemical mapping using stream sediments in west-central Nigeria: Implications for environmental studies and mineral exploration in West Africa. Applied Geochemistry, 27, 1035–1052.

    Article  Google Scholar 

  • Lark, R. M., Bearcock, J. M., & Ander, E. L. (2016). How does temporal variation affect the value of stream water as a medium for regional geochemical survey? Journal of Geochemical Exploration, 169, 211–233.

    Article  Google Scholar 

  • Lax, K., & Selinus, O. (2005). Geochemical mapping at the Geological Survey of Sweden. Geochemistry: Exploration, Environment, Analysis, 5, 337–346.

    Google Scholar 

  • Lech, M. E., & de Caritat, P. (2007). Baseline geochemical survey of the Riverina region of New South Wales and Victoria, Australia: Concentrations and distributions of As, Ba, Br, Cd Co, Cr, F, Ga, Mo, Sb, U and V compared to national and international guidelines. Geochemistry: Exploration, Environment, Analysis, 7(3), 233–247.

    Google Scholar 

  • Leduc, C., & Itard, Y. (2003). Low sampling density exploration geochemistry for gold in arid and tropical climates: Comparison between conventional geochemistry and BLEG. Geochemistry: Exploration, Environment, Analysis, 3(2), 121–131.

    Google Scholar 

  • Lee, A. K., Gonzales, R. A., Hussein, T. F., Chand, F., & Troup, A. (1982). Regional geochemistry of North Pahang. Geolological Survey of Malaysia, Geochemical Report 2.

  • Leggo, M. D. (1977). Contrasting geochemical expressions of copper mineralization at Namosi, Fiji. Journal of Geochemical Exploration, 8, 431–456.

    Article  Google Scholar 

  • Levinson, A. A. (1974). Introduction to exploration geochemistry (p. 614). Wilmette, IL: Applied Publishing.

    Google Scholar 

  • Levinson, A. A. (1980). Introduction to exploration geochemistry (2nd ed., pp. 615–924). Wilmette, IL: Applied Publishing. (the 1980 supplement).

    Google Scholar 

  • Li, M., Xi, X., Xiao, G., Cheng, H., Yang, Z., Zhou, G., et al. (2014). National multi-purpose regional geochemical survey in China. Journal of Geochemical Exploration, 139, 21–30.

    Article  Google Scholar 

  • Licht, O. A. B., & Tarvainen, T. (1996). Multipurpose geochemical maps produced by integration of geochemical exploration data sets in the Paraná Shield, Brazil. Journal of Geochemical Exploration, 56(3), 167–182.

    Article  Google Scholar 

  • Lima, A., De Vivo, B., Cicchella, D., Cortini, M., & Albanese, S. (2003). Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of (Italy), Campania region. Applied Geochemistry, 18, 1853–1865.

    Article  Google Scholar 

  • Lis, J., & Pasieczna, A. (1995). Geochemical atlas of Poland, 1:2,500,000. Warsaw: Polish Geological Institute.

    Google Scholar 

  • Liu, F., Song, X., Yang, L., Han, D., Zhang, Y., Ma, Y., et al. (2015). The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China. Science of the Total Environment, 538, 327–340.

    Article  Google Scholar 

  • Lombard, M., De Bruin, D., & Elsenbroek, J. H. (1999). High-density regional geochemical mapping of soils and stream sediments in South Africa. Journal of Geochemical Exploration, 66(1), 145–149.

    Article  Google Scholar 

  • Mankovská, B. (1996). Geochemical atlas of Slovakia: Forest biomass. Ministry of the Environment of the Slovak Republic and Geological Survey of Slovakia, Bratislava, Slovakia.

  • Martin, A. P., Turnbull, R. E., Rattenbury, M. S., Cohen, D. R., Hoogewerff, J., Rogers, K. M., et al. (2016). The regional geochemical baseline soil survey of southern New Zealand: Design and initial interpretation. Journal of Geochemical Exploration, 167, 70–82.

    Article  Google Scholar 

  • Matthews, M. D. (1996). Importance of sampling design and density in target recognition. In D. Schumacher & M. A. Abrams (Eds.), Hydrocarbon migration and its near-surface expressions (Vol. 66, pp. 243–253). Tulsa: AAPG Memoir.

    Google Scholar 

  • McClenaghan, M. B., Parkhill, M. A., Pronk, A. G., & Sinclair, W. D. (2017). Indicator mineral and till geochemical signatures of the Mount Pleasant W–Mo–Bi and Sn–Zn–In deposits, New Brunswick, Canada. Journal of Geochemical Exploration, 172, 151–166.

    Article  Google Scholar 

  • McConnell, J. W., & Batterson, M. J. (1987). The Strange Lake Zr–Y–REE–Nb Be deposit: A geochemical profile in till, lake and stream sediment and water. Journal of Geochemical Exploration, 29, 105–127.

    Article  Google Scholar 

  • McConnell, J., & Wand Davenport, R. H. (1989). Gold and associated trace elements in Newfoundland lake sediment: Their application to gold exploration. Journal of Geochemical Exploration, 32, 33–50.

    Article  Google Scholar 

  • Meyer, W. T., Theobald, R. K., & Bloom, H. (1979). Stream sediment geochemistry. In: Hood, R. J. (Ed.), Geophysics and geochemistry in the search for metallic ores (Vol. 31, pp. 411–434). Geological Survey of Canada, Economic Geology Report.

  • Minolfi, G., Albanese, S., Lima, A., Tarvainen, T., Fortelli, A., & De Vivo, B. (2016). A regional approach to the environmental risk assessment-human health risk assessment case study in the Campania region. Journal of Geochemical Exploration, 184, 400–416.

    Article  Google Scholar 

  • Minolfi, G., Albanese, S., Lima, A., Tarvainen, T., Rezza, C., & De Vivo, B. (2018a). Human health risk assessment in Avellino–Salerno metropolitan areas, Campania Region, Italy. Journal of Geochemical Exploration. https://doi.org/10.1016/j.gexplo.2017.12.011.

    Article  Google Scholar 

  • Minolfi, G., Petrik, A., Albanese, S., Lima, A., Cannatelli, C., Rezza, C., et al. (2018b). The distribution of Pb, Cu and Zn in topsoil of the Campanian Region, Italy. Geochemistry: Exploration, Environment, Analysis. https://doi.org/10.1144/geochem2017-074.

    Book  Google Scholar 

  • Moon, C. J., Michael, K. J., Whateley, M. K. G., & Evans, A. M. (2006). Introduction in mineral exploration (2nd ed.). Boston: Blackwell.

    Google Scholar 

  • Mulja, T., Collins, M., Wong, H. H., Rizal, R., Brown, T., & Zainuddin, M. (2003). An integrated mineral exploration programme in the Takengon tenement, Aceh magmatic arc, north Sumatra. Geochemistry: Exploration, Environment, Analysis, 3(4), 321–335.

    Google Scholar 

  • Nichol, I., James, L. D., & Viewing, K. (1966). Regional geochemical reconnaissance in Sierra Leone. Transaction of Institute of Mining and Metallurgy (Section B: Applied Earth Sciences), 75, B146–B161.

    Google Scholar 

  • Ohta, A., Imai, N., Terashima, S., & Tachibana, Y. (2011). Regional geochemical mapping in eastern Japan including the nation’s capital, Tokyo. Geochemistry: Exploration, Environment, Analysis, 11, 211–223.

    Google Scholar 

  • Ottesen, R.T., Bogen, J., Bö1viken, B. & Volden, T. (1989). Overbank sediment: A representative sample medium for regional geochemical mapping. In: Jenness, S. E., et al. (Eds.), Geochemical exploration 1987. Journal of Geochemical Exploration, 32, 257–277.

  • Page, B. G. N., Bennett, J. D., Cameron, N. R., McBridge, D., Jeffery, D. H., Keats, W., & Thaib, J. (1978). Regional geochemistry, geological reconnaissance mapping and mineral exploration in northern Sumatra, Indonesia. In: Jones, M. J. (Ed.), Proceedings 11th common wealth mining and metallurgy congress, Hong Kong (pp. 455–462). Institution of Mining and Metallurgy, London.

  • Petrik, A., Albanese, S., Lima, A., Jordan, G., Rolandi, R., Rezza, C., et al. (2018a). Spatial pattern analysis of Ni and its concentrations in topsoils in the Campania region (Italy). Journal of Geochemical Exploration. https://doi.org/10.1016/j.gexplo.2017.09.009.

    Article  Google Scholar 

  • Petrik, A., Albanese, S., Lima, A., Jordan, G., Rolandi, R., Rezza, C., et al. (2018b). Spatial pattern recognition of arsenic in topsoil using high-density regional data. Geochemistry: Exploration, Environment, Analysis. https://doi.org/10.1144/geochem2017-060.

    Article  Google Scholar 

  • Pinto, M. C., da Silva, E. F., Silva, M. M. V. G., & Dinis, P. A. (2014). Estimated background values maps of uranium in Santiago Island topsoil and stream sediments. Procedia Earth and Planetary Science, 8, 23–27.

    Article  Google Scholar 

  • Plant, J. A. (1971). Orientation studies on stream-sediment sampling for a regional geochemical survey in northern Scotland. Transactions of Institution of Mining and Metallurgy, 80, B324–B345.

    Google Scholar 

  • Plant, J. A., Hale, M., & Ridgway, J. (1988). Developments in regional geochemistry form mineral exploration. Transactions of the Institution of Mining and Metallurgy, 97, B116–B140.

    Google Scholar 

  • Plant, J. A., Hale, M., & Ridgway, J. (1989). Regional geochemistry based on stream sediment sampling. In: Garland, G. D. (Ed.), Proceedings of exploration ‘87 (Vol. 3, pp. 384–404). Ontario Geological Survey, Special Publications.

  • Plant, J., Moore, P. J., Perrin, R. M. S., Webb, J. S., & Howarth, R. J. (1979). Regional geochemical mapping and interpretation in Britain. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 288, 95–112.

    Article  Google Scholar 

  • Power, G. M., & Barnes, R. P. (2014). High density, regional, stream sediment geochemistry data as a product of undergraduate training in the Central Wales lead-zinc orefield, UK. Geochemistry: Exploration, Environment, Analysis, 14(1), 25–31.

    Google Scholar 

  • Rapant, S., Bodiš, D., Vrana, K., Cvečková, V., Kordík, J., Krčmová, K., et al. (2009). Geochemical atlas of Slovakia and examples of its applications to environmental problems. Environmental Geology, 57(1), 99–110.

    Article  Google Scholar 

  • Rapant, S., Vrana, K., & Bodis, D. (1996). Geochemical atlas of Slovakia: Groundwater. Bratislava: Ministry of Environment of the Slovak Republic and Geological Survey of Slovakia.

    Google Scholar 

  • Reedman, A. J. (1973). Geochemical atlas of Uganda. Geological Survey and Mines Department: Entebbe.

    Google Scholar 

  • Reedman, A. J., & Gould, D. (1970). Low density stream sediment surveys in geochemical prospecting: An example from northeastern Uganda. Transactions of the Institution of Mining and Metallurgy, B, Applied Earth Science, 79, 246–248.

    Google Scholar 

  • Reimann, C., Äyräs, M., Chekushin, V., Bogatyrev, I., Boyd, R., de Caritat, P., et al. (1998). Environmental geochemical atlas of the Central Barents region. Special Publication of the Central Kola Expedition, Geological Survey of Finland and Geological Survey of Norway. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., & O’Connor, P. (Eds.). (2014a). Chemistry of Europe’s agricultural soils—Part A: Methodology and interpretation of the GEMAS data set. Geologisches Jahrbuch (Reihe B 102). Hannover: Schweizerbarth.

    Google Scholar 

  • Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., & O’Connor, P. (Eds.). (2014b). Chemistry of Europe’s agricultural soils. Part B: General background information and further analysis of the GEMAS Data Set. Geologisches Jahrbuch, B-103, E. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—Concept and reality. Science of the Total Environment, 350(1/3), 12–27.

    Article  Google Scholar 

  • Reimann, C., Ladenberger, A., Birke, M., & de Caritat, P. (2016). Low density geochemical mapping and mineral exploration: Application of the mineral system concept. Geochemistry: Exploration, Environment, Analysis, 16(1), 48–61.

    Google Scholar 

  • Reimann, C., Matschullat, J., Birke, M., & Salminen, R. (2009). Arsenic distribution in the environment: The effects of scale. Applied Geochemistry, 24, 1147–1167.

    Article  Google Scholar 

  • Reimann, C., Matschullat, J., Birke, M., & Salminen, R. (2010). Antimony in the environment: Lessons from geochemical mapping. Applied Geochemistry, 25(2), 175–198.

    Article  Google Scholar 

  • Reimann, C., & Melezhik, V. (2001). Metallogenic provinces, geochemical provinces and regional geology—What causes large-scale patterns in low-density geochemical maps of the C-horizon of podzols in Arctic Europe? Applied Geochemistry, 16, 963–984.

    Article  Google Scholar 

  • Reimann, C., Melezhik, V., & Niskavaara, H. (2007). Low-density regional geochemical mapping of gold and palladium highlighting the exploration potential of northernmost Europe. Economic Geology, 102, 327–334.

    Article  Google Scholar 

  • Reimann, C., Siewers, U., Tarvainen, T., Bityukova, L., Eriksson, J., Gilucis, A., et al. (2003). Agricultural soils in Northern Europe: a geochemical atlas. Geol. J., Sonderhefte SD 5. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung (Nägele & Obermiller).

    Google Scholar 

  • Rencz, A. N., Klassen, R. A., & Moore, A. (2002). Comparison of geochemical data derived from till and lake sediment samples, Labrador, Canada. Geochemistry: Exploration, Environment, Analysis, 2(1), 27–35.

    Google Scholar 

  • Rezza, C., Petrik, A., Albanese, S., Lima, A., Minofli, G., & De Vivo, B. (2018). Molybdenum, Sn and W patterns in topsoils of the Campania Region, Italy. Geochemistry: Exploration, Environment, Analysis. https://doi.org/10.1144/geochem2017-061.

    Article  Google Scholar 

  • Ridgway, J., Appleton, J. D., & Greally, K. B. (1991). Variations in regional geochemical patterns effects of site-selection and data-processing algorithms. Transactions of the Institution of Mining and Metallurgy, 100, B122–B129.

    Google Scholar 

  • Ridgway, J., Jones, R. C., & Greally, K. B. (1994). A comparison of high and low density geochemical sampling in Zimbabwe: Application to environmental studies. Nottingham: British Geological Survey. (WC/94/055).

    Google Scholar 

  • Röllig, G., Berger, W., Birke, M., Enderlein, F., Grosche, G., Kabardin, B., et al. (1990). Vergleichende Bewertung der Rohstofführung in den Grundgebirgseinheiten im Südteil der DDR. Berlin: Gesellschaft für Umwelt- und Wirtschaftsgeologie GmbH.

    Google Scholar 

  • Rose, A. W., Hawkes, H. E., & Webb, J. S. (1979). Geochemistry in mineral exploration (2nd ed., p. 657). London: Academic Press.

    Google Scholar 

  • Salminen, R. (1992). Scale of geochemical surveys. In L. K. Kauranne, R. Salminen, & K. Eriksson (Eds.), Regolith exploration geochemistry in arctic and temperate terrains. Handbook of exploration geochemistry (Vol. 5, pp. 143–164). Amsterdam: Elsevier Science Publishers.

    Chapter  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., et al. (2005). Geochemical atlas of Europe, part 1, background information, methodology and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Salminen, R., Chekushin, V., Tenhola, M., Bogatyrev, I., Glavaskikh, S. P., Fedotova, E., et al. (2004). Geochemical atlas of the Eastern Barents region. Amsterdam: Elsevier B.V.

    Google Scholar 

  • Salminen, R., Kashabano, J., Myumbilwa, Y., Petro, F. N., & Partanen, M. (2008). Indications of deposits of gold and platinum group elements from a regional geochemical stream sediment survey in NW Tanzania. Geochemistry: Exploration, Environment, Analysis, 8(3–4), 313–322.

    Google Scholar 

  • Salpeteur, I., & Jezequel, J. (1992). Platinum and palladium stream-sediment geochemistry downstream from PGE-bearing ultramafics, West Andriamena area, Madagascar. Journal of Geochemical Exploration, 43, 43–65.

    Article  Google Scholar 

  • Schmitt, H. R., Friske, R. W. B., & Hornbrook, E. H. W. (1985). A preliminary interpretation of the gold data from east-central Saskatchewan. Geological Survey of Canada, Open File Report (Vol. 1129) (Part).

  • Shacklette, H. T., & Boerngen, J. G. (1984). Element concentrations in soils and other surficial materials of the conterminous United States. US Geological Survey Professional Paper, 1270.

  • Shahrestani, S., & Mokhtari, A. R. (2017a). Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies. Journal of African Earth Sciences, 128, 16–26.

    Article  Google Scholar 

  • Shahrestani, S., & Mokhtari, A. R. (2017b). Improved detection of anomalous catchment basins by incorporating drainage density in dilution correction of geochemical residuals. Geochemistry: Exploration, Environment, Analysis. https://doi.org/10.1144/geochem2016-015.

    Article  Google Scholar 

  • Shahrestani, S., Mokhtari, A. R., & Hosseini-Dinani, H. (2018). How does sampling density affect mineralization detection in stream sediment geochemical exploration? A case study from NW of Iran. Geochemistry: Exploration, Environment, Analysis. https://doi.org/10.1144/geochem2017-076.

    Article  Google Scholar 

  • Simmonds, V., Jahangiryar, F., Moazzen, M., & Ravaghi, A. (2017). Distribution of base metals and the related elements in the stream-sediments around the Ahar area (NW Iran) and their implications. Chemie der Erde-Geochemistry, 77(3), 429–441.

    Article  Google Scholar 

  • Smith, S. M. (1997). National geochemical databaseReformatted data from the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program. US Geological Survey Open-File Report, 97-492 Version 1.40.

  • Smith, D. B. (2009). Geochemical studies of North American soils: Results from the pilot study phase of the North American Soil Geochemical Landscapes Project. Applied Geochemistry, 24(8), 1355–1616.

    Article  Google Scholar 

  • Smith, D. B., Cannon, W. F., Woodruff, L. G., Garrett, R. G., Klassen, R., Kilburn, E., Horton, J. D., King, H. D., Goldhaber, M. B., & Morrison, J. M. (2005). Major- and trace-element concentrations in soils from two continental-scale transects of the United States and Canada. U.S. Geological Survey, Open File Report 2005-1253. http://pubs.usgs.gov/of/2005/1253/pdf/OFR1253.pdf. Accessed 20 Oct 2017.

  • Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, F., Ellefsen, K. J. (2014). Geochemical and mineralogical maps for soils of the conterminous United States. U.S. Geological Survey Open File Report 2014-1082. p. 386. http://pubs.usgs.gov/of/2014/1082/. Accessed 24 Oct 2017.

  • Smith, D. B., & Reimann, C. (2008). Low-density geochemical mapping and the robustness of geochemical patterns. Geochemistry: Exploration, Environment, Analysis, 8, 219–227.

    Google Scholar 

  • Smith, D. B., Smith, S. M., & Horton, J. D. (2013). History and evaluation of national-scale geochemical data sets for the United States. Geoscience Frontiers, 4(2), 167–183.

    Article  Google Scholar 

  • Steenfelt, A. (2012). Rare earth elements in Greenland: Known and new targets identified and characterised by regional stream sediment data. Geochemistry: Exploration, Environment, Analysis, 12(4), 313–326.

    Google Scholar 

  • Stephenson, B., Ghazali, S. A., & Widjaja, H. (1982). Regional geochemical atlas series of Indonesia: 1. Northern Sumatra, 1(1), 500.

    Google Scholar 

  • Tenhola, M. (1988). Regional geochemical mapping based on lake sediments in eastern Finland. In D. R. MacDonald & K. A. Mills (Eds.), Prospecting in areas of glaciated terrain, 1988 (pp. 305–331). St. John’s: Canadian Institute of Mining and Metallurgy.

    Google Scholar 

  • Thalmann, F., Schermann, O., Schroll, E., & Hausberger, G. (1989). Geochemischer Atlas der Republik Österreich (Textteil and kartenteil) (p. 23). Rasumofskygasse: Geologische Bundesanstalt.

    Google Scholar 

  • Theobald, P. K., Eppinger, R. G., Turner, R. L., & Shen, S. (1991). The effect of scale on the interpretation of geochemical anomalies. Journal of Geochemical Exploration, 40, 9–23.

    Article  Google Scholar 

  • Theobald, P. K., & Thompson, C. E. (1959). Geochemical prospecting with heavy mineral concentrates used to locate a tungsten deposit. U.S. Geological Survey Circular, 411, 1–13.

    Google Scholar 

  • Thiombane, M., Zuzolo, D., Cicchella, D., Albanese, S., Lima, A., Cavaliere, M., et al. (2018). Soil geochemical follow-up in the Cilento World Heritage Park (Campania, Italy) through exploratory compositional data analysis and CA fractal model. Journal of Geochemical Exploration, 189, 85–99.

    Article  Google Scholar 

  • Thomson, I. (1976). Geochemical studies in central-west Brazil; Final report of the pilot phase of the Projeto Geofisico Brasil–Canada, DNPM, Brazil.

  • Wang, X. (1998). Leaching of mobile forms of metals in overburden: Development and applications. Journal of Geochemical Exploration, 61, 39–55.

    Article  Google Scholar 

  • Wang, X. (2005). National and global scale geochemical mapping for mineral exploration and assessment in China. Explore, 127, 23–29.

    Google Scholar 

  • Wang, X. (2012). Global geochemical baselines: Understanding the past and predicting the future. Earth Science Frontiers, 19(3), 7–18.

    Google Scholar 

  • Wang, X., Cheng, Z., Lu, Y., Xu, L., & Xie, X. (1997). Nanoscale metals in earth gas and mobile forms of metals in overburden in wide-spaced regional exploration for giant ore deposits in overburden terrains. Journal of Geochemical Exploration, 58, 63–72.

    Article  Google Scholar 

  • Wang, X., Chi, Q., Liu, H., Nie, L., & Zhang, B. (2007). Wide-spaced sampling for delineation of geochemical provinces in desert terrains, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2), 153–161.

    Google Scholar 

  • Wang, Q. F., Deng, J., Liu, H., Wang, Y., Sun, X., & Wan, L. (2011). Fractal models for estimating local reserves with different mineralization qualities and spatial variations. Journal of Geochemical Exploration, 108, 196–208.

    Article  Google Scholar 

  • Wang, X., Xie, X., Cheng, Z., & Liu, D. (2000). Delineation of regional geochemical anomalies penetrating through thick covers in concealed terrains—A case history from the Olympic Dam deposit. Journal of Geochemical Exploration, 66, 85–97.

    Article  Google Scholar 

  • Weaver, T. A., Freeman, S. H., Broxton, D. E., & Bolivar, S. L. (1983). Geochemical atlas of Alaska (No. LA-9897-MS; GJBX-32 (83)). Los Alamos National Lab., NM (USA).

  • Webb, J. S. (1958). Notes on geochemical prospecting for lead-zinc deposits in the British Isles. In: Symposium on the future of non-ferrous mining in Great Britain and Ireland (pp. 419–436). Institution of Mining and Metallurgy, London.

  • Webb, J. S., Fortescue, J., Nichol, I., & Tooms, J. S. (1964). Regional geochemical reconnaissance in the Namwala Concession area, Zambia. Technical Communication, 47. Geochemical Prospecting Research Centre.

  • Webb, J. S., & Howarth, R. J. (1979). Regional geochemical mapping. Philosophical Transactions of the Royal Society of London. Series B, 288, 81–93.

    Article  Google Scholar 

  • Webb, J. S., Thornton, I., Thompson, M., Howarth, R. J., & Lowenstein, P. L. (1978). The Wolfson geochemical atlas of England and Wales. Oxford: Clarendon Press.

    Google Scholar 

  • Woodruff, L., Cannon, W. F., Smith, D. B., & Solano, F. (2015). The distribution of selected elements and minerals in soil of the conterminous United States. Journal of Geochemical Exploration, 154, 49–60.

    Article  Google Scholar 

  • Xie, X., & Cheng, H. (1997). The suitability of flood plain sediment as a global sampling medium: Evidence from China. Journal of Geochemical Exploration, 58, 51–62.

    Article  Google Scholar 

  • Xie, X., & Cheng, H. (2001). Global geochemical mapping and its implementation in the Asia-Pacific region. Applied Geochemistry, 16(11–12), 1309–1321.

    Google Scholar 

  • Xie, X., & Cheng, H. (2014). Sixty years of exploration geochemistry in China. Journal of Geochemical Exploration, 139, 4–8.

    Article  Google Scholar 

  • Xie, S., Cheng, Q., Xing, X., Bao, Z., & Chen, Z. (2010). Geochemical multifractal distribution patterns in sediments from ordered streams. Geoderma, 160, 36–46.

    Article  Google Scholar 

  • Xie, X., & Ren, T. (1991). A decade of regional geochemistry in China—The National Reconnaissance project. Transactions of the Institution of Mining and Metallurgy, 100, B57–B65.

    Google Scholar 

  • Xie, X., Sun, H., & Ren, T. (1989). Regional geochemistry—National Reconnaissance project in China. Journal of Geochemical Exploration, 33, 1–9.

    Article  Google Scholar 

  • Xie, X., Wang, X., Xu, L., Kremenetsky, A. A., & Kheifets, V. K. (2000). Orientation study of strategic deep-penetration geochemical methods in central Kyzykum desert terrain, Uzbekistan. Journal of Geochemical Exploration, 66, 135–143.

    Article  Google Scholar 

  • Xie, X., Wang, X., Zhang, Q., Zhou, G., Cheng, H., Liu, D., et al. (2008). Multi-scale geochemical mapping in China. Geochemistry: Exploration, Environment, Analysis, 8, 333–341.

    Google Scholar 

  • Xie, X., & Yin, B. (1993). Geochemical patterns from local to global. Journal of Geochemical Exploration, 47, 109–129.

    Article  Google Scholar 

  • Yamamoto, K., Tanaka, T., Minami, M., Minura, K., Asahara, Y., Yoshida, H., et al. (2007). Geochemical mapping in Aichi prefecture, Japan: Its significance as a useful dataset for geological mapping. Applied Geochemistry, 2, 306–319.

    Article  Google Scholar 

  • Yang, F., Kong, M., Liu, H., Yu, J., Yang, S., Hao, Z., et al. (2017). Discovery of Wolitu Pb–Zn deposit through geochemical prospecting under loess cover in Inner Mongolia, China. Geoscience Frontiers, 8(5), 951–960.

    Article  Google Scholar 

  • Yao, W., Xie, X., Zhao, P., & Bai, J. (2014). Global scale geochemical mapping program—Contributions from China. Journal of Geochemical Exploration, 139, 9–20.

    Article  Google Scholar 

  • Yilmaz, H., Cohen, D. R., & Sonmez, F. N. (2017). Comparison between the effectiveness of regional BLEG and—80# stream sediment geochemistry in detection of precious and base metal mineral deposits in Western Turkey. Journal of Geochemical Exploration, 181, 69–80.

    Article  Google Scholar 

  • Yilmaz, H., Sonmez, F. N., & Carranza, E. J. M. (2015). Discovery of Au–Ag mineralization by stream sediment and soil geochemical exploration in metamorphic terrain in western Turkey. Journal of Geochemical Exploration, 158, 55–73.

    Article  Google Scholar 

  • Yousefi, M., Carranza, E. J. M., & Kamkar-Rouhani, A. (2013). Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. Journal of Geochemical Exploration, 128, 88–96.

    Article  Google Scholar 

  • Zeegers, H., & Leduc, C. (1991). Geochemical exploration for gold in temperate, arid and semi-arid, and rain forest terrains. In R. P. Foster (Ed.), Gold metallogeny and exploration (pp. 309–335). Glasgow: Blackie.

    Chapter  Google Scholar 

  • Zheng, Y., Sun, X., Gao, S., Wang, C., Zhao, Z., Wu, S., et al. (2014). Analysis of stream sediment data for exploring the Zhunuo porphyry Cu deposit, southern Tibet. Journal of Geochemical Exploration, 143, 19–30.

    Article  Google Scholar 

  • Zuo, R. (2012). Exploring the effects of cell size in geochemical mapping. Journal of Geochemical Exploration, 112, 357–367.

    Article  Google Scholar 

  • Zuzolo, D., Cicchella, D., Albanese, S., Lima, A., Zuo, R., & De Vivo, B. (2018). Exploring uni-element geochemical data under a compositional perspective. Applied Geochemistry, 91, 174–184.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate greatly the professional editorship and constructive review of the manuscript by Prof. Carranza, editor-in-chief of the NRR. Also, thanks to constructive comments received from three anonymous reviewers of the NRR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Dinani, H., Mokhtari, A.R., Shahrestani, S. et al. Sampling Density in Regional Exploration and Environmental Geochemical Studies: A Review. Nat Resour Res 28, 967–994 (2019). https://doi.org/10.1007/s11053-018-9431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9431-2

Keywords

Navigation