Skip to main content
Log in

3D Geological Modeling for Mineral System Approach to GIS-Based Prospectivity Analysis: Case Study of an MVT Pb–Zn Deposit

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Mineral system modeling approach is useful for assessing the likelihood of occurrences of a type of mineral deposit, which are described using two characteristics: spatial scales modeling and relevant geochemical processes. Possible spatial scales include the craton, region, district, and deposit scales. At each scale, geological modeling is an important aid to exhibit favorable features of mineralization at two-dimension (2D) and three-dimension (3D). Commonly, 3D geometry can be used to restructure geological anomaly at deposit and district/camp scales for quantitative mineral resources assessment. However, they are sensitive to input datasets. Thus, in a sense, the reliability of a 3D geological model depends on how much data have been collected at both ground surface and depth. In addition, the components of dataset also constrain what geological modeling method can be used. In this paper, dynamic updatability is considered as one of the metrics to assess 3D geological modeling methods. This paper discusses different 3D geological modeling processes and compares the ease ability to update. A case study was conducted to analyze the ore-bearing formations and structure of a potential Mississippi valley-type (MVT) Pb–Zn deposit in the Huayuan–Malichang District, Hunan Province, China. The contributions of this study include (1) analyzing what kinds of datasets must be collected for geological modeling at deposit and district scales; (2) the use of multiple 3D modeling processes; and (3) comparing metric what updatability between different 3D modeling processes is. Finally, this paper discusses an integration model based on the above demonstration and other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Modified from Zhu (1997)

Figure 2

Modified from McCuaig and Hronsky (2014)

Figure 3

From Calcagno et al. (2011)

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Modified after Qi et al. (2014)

Similar content being viewed by others

References

  • Amenta, N., Bern, M., & Eppstein, D. (1999). Optimal point placement for mesh smoothing. Journal of Algorithms, 30(2), 302–322.

    Article  Google Scholar 

  • Calcagno, P., & Chiles, J. P. (2008). Geological modeling from field data and geological knowledge Part I. modeling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 31, 1–11.

    Google Scholar 

  • Calcagno, P., Chilès, J. P., Courrioux, G., & Guillen, A. (2011). Geological modeling from field data and geological knowledge: Part I. Modeling method coupling 3D potential-field interpolation and geological rules—Recent advances in computational geodynamics—theory, numerics and applications. Physics of the Earth and Planetary Interiors, 171(1), 147–157.

    Google Scholar 

  • Carmichael, T., & Ailleres, L. (2016). Method and analysis for the upscaling of structural data. Journal of Structural Geology, 83, 121–133.

    Article  Google Scholar 

  • Caumon, G., Collon-Drouaillet, P., Carlier, Le, de Veslud, C., Viseur, S., & Sausse, J. (2009). Surface-based 3D modeling of geological structures. Mathematical Geosciences, 41(8), 927–945.

    Article  Google Scholar 

  • Chen, J. S., & Lin, W. C. (2016). A new surface interpolation technique for reconstructing 3-D objects from serial cross-sections. International Conference on Pattern Recognition IEEE, 1988, 1100–1102.

    Google Scholar 

  • Chen, J., Lv, P., Wu, W., Zhao, J., & Hu, Q. (2007). A 3D method for predicting blind orebodies based on a 3D visualization model and its application. Earth Science Frontiers, 14(5), 54–62.

    Article  Google Scholar 

  • Chen, J. P., & Wang, C. (2012). Three-dimensional metallogenic prediction in Yongmei Region based on digital ore deposit model. Scientific and Technological Management of Land and Resources, 29, 14–20.

    Google Scholar 

  • Cheng, M., Hu, M., Bao, Z., & Bao, J. (2011). Discussion on the geological features and genesis of the Limei Pb–Zn ore concentration belt in North-western Hunan Province. Geology and Exploration, 47(2), 251–260.

    Google Scholar 

  • Collon, P., Pichat, A., Kergaravat, C., Botella, A., Caumon, G., Ringenbach, J. C., et al. (2016). 3D modeling from outcrop data in a salt tectonic context: Example from the Inceyol mini-basin, Sivas Basin, Turkey. Interpretation, 4(3), SM17–SM31.

    Article  Google Scholar 

  • Cox, D. P., & Singer, D. A. (1986). Mineral deposit models. Washington: U.S. Geological Survey Bulletin. United States Government Printing Office.

    Google Scholar 

  • Duan, Q. F. (2014). The research of metallogenic regularity of stratabound zinc–lead deposits from Sinan-Cambrian in western Hunan and western Hubei. China University of Geosciences., 16, 23–35.

    Google Scholar 

  • Fu, S. (2011). Discussion on formation rules of high-grade Pb–Zn ore in Western Hunan. Nonferrous Metal, Mining Section, 63(6), 27–35.

    Google Scholar 

  • Gerritsen, B. H. M., van der Werff, K., & Veltkamp, R. C. (2002). Modeling natural objects with alpha-complexes. Computer-Aided Design, 34(12), 881–897.

    Article  Google Scholar 

  • Gjoystdal, H., Reinhardsen, J. E., & Astebol, K. (1985). Computer representation of 3-D geological structures using a new “solid modeling” technique. Geophysical Prospecting, 33(8), 1195–1211.

    Article  Google Scholar 

  • González-Álvarez, I., Porwal, A., Beresford, S. W., McCuaig, T. C., & Maier, W. D. (2010). Hydrothermal Ni prospectivity analysis of Tasmania, Australia. Ore Geology Reviews, 38(3), 168–183.

    Article  Google Scholar 

  • Hagemann, S. G., Lisitsin, V. A., & Huston, D. L. (2016). Mineral system analysis: Quo vadis. Ore Geology Reviews, 76, 504–522.

    Article  Google Scholar 

  • Hillier, M. J., Schetselaar, E. M., Kemp, E. A., & Perron, G. (2014). Three-dimensional modeling of geological surfaces using generalized interpolation with radial basis functions. Mathematical Geosciences, 46(8), 931–953.

    Article  Google Scholar 

  • Hoffman, K., Neave, J., & Klein, R. (2003). Streamlining the work flow from structure model to reservoir grid. In SPE annual technical conference and exhibition. Society of petroleum engineers.

  • Hoppe, H., Derose, T., Duchamp, T., Mcdonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganized points. ACM SIGGRAPH Computer Graphics, 26(2), 71–78.

    Article  Google Scholar 

  • Hronsky, J. M. A., & Groves, D. I. (2008). Science of targeting: Definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences, 55, 3–12.

    Article  Google Scholar 

  • Huang, G. F., Jia, B. H., Sun, H. Q., Luo, X. Y., Tang, F. P., Chen, J., Su, Z. W., Tan, Y. H., Deng, Y. L., Yin, J. S., Yin, R. X., Yi, B. L., Li, S. M., Li, D. J., Ye, Y. Y., An, J. H., Zhou, G. X., Chen, B. H., He, C. P., Shi, J. J., Xiao, D. G., Li, Z. H., Zi, B. Z., Huang, F. Q., Zeng, F., Peng C., Yao, Y. J., & Duan L. (2011). China’s national mineral resource assessment achievement report: Mineral potential mapping in Hunan Province. Hunan Institute of Geological Survey (pp. 253–310).

  • Hunan Geological Survey Institute. (2011). Report on the application of magnetic data in Hunan Province, China. (in Chinese).

  • Jessell, M. W., Aillères, L., & Kemp, E. (2014). Next generation three the answers. Mathematical geomodeling and inversion. SEG Special Publication, 18, 261–272.

    Google Scholar 

  • Joly, A., Porwal, A., & McCuaig, T. C. (2012). Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore Geology Reviews, 48, 349–383.

    Article  Google Scholar 

  • Joly, A., Porwal, A., McCuaig, T. C., Chudasama, B., Dentith, M. C., & Aitken, A. R. A. (2015). Mineral systems approach applied to GIS-based 2D-prospectivity modeling of geological regions: Insights from Western Australia. Ore Geology Reviews, 71, 673–702.

    Article  Google Scholar 

  • Kemp, E. A. D. (1999). Visualization of complex geological structures using 3-D Bézier construction tools. Computers & Geosciences, 25(5), 581–597.

    Article  Google Scholar 

  • Knox-Robinson, C. M., & Wyborn, L. A. (1997). Towards a holistic exploration strategy: Using geographic information systems as a tool to enhance exploration. Journal of the Geological Society of Australia, 44(4), 453–463.

    Google Scholar 

  • Lajaunie, C., Courrioux, G., & Manuel, L. (1997). Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Mathematical Geology, 29(4), 571–584.

    Article  Google Scholar 

  • Lan, X. Y., Du, J. G., Yan, J. Y., An, M., Wan, Q., Guo, D., et al. (2015). 3D gravity and magnetic interactive inversion modeling based on prior information: A case study of the Tongling ore concentration area. Chinese Journal of Geophysics, 58(12), 4436–4449.

    Google Scholar 

  • Li, S. M. (2016). Research on metallogenic regularities and prognosis of lead–zinc deposits in Northwestern Hunan. Ph.D. thesis. China University of Geoscience: Beijing.

  • Li, N., Bagas, L., Li, X. H., Xiao, K. Y., Li, Y., Ying, L. J., et al. (2016). An improved buffer analysis technique for model-based 3D mineral potential mapping and its application. Ore Geology Reviews, 76, 94–107.

    Article  Google Scholar 

  • Li, N., Song, X., Xiao, K., Li, S., Li, C., & Wang, K. (2018a). Part II: A demonstration of integrating multiple-scale 3D modelling into GIS-based prospectivity analysis: A case study of the Huayuan-Malichang district, China. Ore Geology Reviews, 95, 292–305.

    Article  Google Scholar 

  • Li, N., Xiao, K., Sun, L., Li, S., Zi, J., Wang, K., Song, X., Ding, J., & Li, C. (2018b). Part I: A resource estimation based on mineral system modelling prospectivity approaches and analogical analysis: A case study of the MVT Pb-Zn deposits in Huayuan district, China. Ore Geology Reviews, 101, 966–984.

    Article  Google Scholar 

  • Li, X. H., Yuan, F., Zhang, M. M., Jia, C., Jowitt, S. M., Ord, A., et al. (2015). Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China. Ore Geology Reviews, 71, 633–654.

    Article  Google Scholar 

  • Lin, W. C., Chen, S. Y., & Chen, C. T. (1989). A new surface interpolation technique for reconstructing 3D objects from serial cross-sections. Computer Vision, Graphics, and Image Processing, 48, 124–143.

    Article  Google Scholar 

  • Lindsay, M. D., Aillères, L., Jessell, M. W., De Kemp, E. A., & Betts, P. G. (2012). Locating and quantifying geological uncertainty in three-dimensional models: analysis of the Gippsland Basin, southeastern Australia. Tectonophysics, 546–547(3), 10–27.

    Article  Google Scholar 

  • Liu, W. J. (1985). Evolution of Huanyuan-Guizhou fault zone and the features of mineralization. Geoview, 81(3), 224–231.

    Google Scholar 

  • Mallet, J. L. (1992). GOCAD: A computer aided design program for geological applications. Three-Dimensional Modeling with Geoscientific Information Systems, 354, 123–141.

    Article  Google Scholar 

  • Mallet, J. L. (1997). Discrete modeling for natural objects. Mathematical Geology, 29(2), 199–219.

    Article  Google Scholar 

  • Mao, X. C., Tang, Y. H., & Deng, H. (2012). Three-dimensional morphological analysis method for geologic bodies and its application. Journal of Central South University (Science and Technology), 43(2), 588–595.

    Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38(3), 128–138.

    Article  Google Scholar 

  • McCuaig, T. C., & Hronsky, J. M. A. (2014). The mineral system concept: The key to exploration targeting. Society of Economic Geologists, Special Issue, 18, 153–175.

    Google Scholar 

  • Perrouty, S., Aillères, L., Jessell, M., Baratoux, L., Bourassa, Y., & Crawford, B. (2012). Revised Eburnean geodynamic evolution of the gold-rich southern Ashanti Belt, Ghana, with new field and geophysical evidence of pre-Tarkwaian deformations. Precambrian Research, 204–205, 12–39.

    Article  Google Scholar 

  • Perrouty, S., Lindsay, M. D., Jessell, M. W., Aillères, L., Martin, R., & Bourassa, Y. (2014). 3D modeling of the Ashanti Belt, southwest Ghana: Evidence for a litho-stratigraphic control on gold occurrences within the Birimian Sefwi Group. Ore Geology Reviews, 63, 252–264.

    Article  Google Scholar 

  • Porwal, A., & Carranza, E. J. M. (2015). Introduction to the special issue: GIS-based mineral potential modeling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.

    Article  Google Scholar 

  • Porwal, A., González-Álvarez, I., Markwitz, V., McCuaig, T. C., & Mamuse, A. (2010). Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geology Reviews, 38(3), 184–196.

    Article  Google Scholar 

  • Porwal, A. K., & Kreuzer, O. P. (2010). Introduction to the special issue: mineral prospectivity analysis and quantitative resource estimation. Ore Geology Reviews, 38, 121–127.

    Article  Google Scholar 

  • Qi, G., Lv, Q. T., Yan, J. Y., Wu, M. A., Deng, Z., Guo, D., et al. (2014). 3D geological modeling of Luzong ore district based on priori information constrained. Acta Geologica Sinica, 88(4), 466–477.

    Google Scholar 

  • Qi, G., Lv, Q. T., Yan, J. Y., Wu, M. A., & Liu, Y. (2012). Geologic constrained 3D gravity and magnetic modeling of Nihe deposit—A case study. Chinese Journal of Geophysics, 55(12), 4194–4206.

    Google Scholar 

  • Rao, J. R. (1993). Deep structure in Hunan. Hunan Geology, 7, 1–100.

    Google Scholar 

  • Savchenko, V. V., Pasko, A. A., Okunev, O. G., & Kunii, T. L. (1995). Function representation of solids reconstructed from scattered surface points and contours. Computer Graphics Forum, 14(4), 181–188.

    Article  Google Scholar 

  • Singer, D. A. (1993). Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Non-renewable Resources, 2, 69–81.

    Article  Google Scholar 

  • Thiele, S. T., Jessell, M. W., Lindsay, M., Ogarko, V., Wellmann, J. F., & Pakyuz-Charrier, E. (2016). The topology of geology 1: Topological analysis. Journal of Structural Geology, 91, 27–38.

    Article  Google Scholar 

  • Turk, G., & Brien, F. (2002). Modeling with implicit surfaces that interpolate. ACM Transactions on Graphics, 2002, 21(4), 855–873.

    Article  Google Scholar 

  • Wang, K., Li, N., Bagas, L., Li, S. M., Song, X. L., & Cong, Y. (2017). GIS-based prospectivity-mapping based on geochemical multivariate analysis technology: A case study of MVT Pb–Zn deposits in the Huanyuan-Fenghuang district, northwestern Hunan Province, China. Ore Geology Reviews, 91, 1130–1146.

    Article  Google Scholar 

  • Wang, G. W., Li, R. X., Carranza, E. J., Zhang, S. T., Yan, C. H., Zhu, Y. Y., et al. (2015). 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geology Reviews, 71(1), 592–610.

    Article  Google Scholar 

  • Wang, G. W., Zhang, S. T., & Yan, C. H. (2011). Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region, China. Computers & Geosciences, 37, 1976–1988.

    Article  Google Scholar 

  • Wellmann, J. F., Croucher, A., & Regenauer-Lieb, K. (2012). Python scripting libraries for subsurface fluid and heat flow simulations with TOUGH2 and SHEMAT. Computers & Geosciences, 43(6), 197–206.

    Article  Google Scholar 

  • Wellmann, J. F., & Regenauer-Lieb, K. (2012). Uncertainties have a meaning: Information entropy as a quality measure for 3D geological models. Tectonophysics, 526–529(2), 207–216.

    Article  Google Scholar 

  • Williams, N. C. (2008). Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew-Wiluna Greenstone Belt, Western Australia. Canada: The University of British Columbia.

    Google Scholar 

  • Wyborn, L. A. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian proterozoic mineral systems: Essential ingredients and mappable criteria [abs.]. In P. C. Hallenstein (Ed.), Australian mining looks northThe challenges and choices (Vol. 5, pp. 109–115). Australian Institute of Mining and Metallurgy Publication Series.

  • Xiao, K., Li, N., Porwal, A., Holden, E. J., Bagas, L., & Lu, Y. J. (2015). GIS-based 3D Prospectivity Mapping: A case study of Jiama copper-polymetallic deposit in Tibet, China. Ore Geology Reviews, 71, 611–632.

    Article  Google Scholar 

  • Xie, J. L., Yang, K. G., & Ma, C. Q. (2006). The characteristics of Huayuan–Zhangjiajie fault belts and ESR dating of Wuling mountain in Western Hunan. Geological Journal of China Universities, 12(1), 14–21.

    Google Scholar 

  • Xue, C. J. (2015). Structure and sedimentary characteristics of ore-bearing layer in Limei ore field in western Hunan Qingxudong Formation. Dissertation, Chang’an University, Xi’an, China, (pp. 1–102).

  • Yan, J. Y., Lv, Q. T., Chen, X. B., Qi, G., Liu, Y., Guo, D., et al. (2014). 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu-Zong ore concentration district, Anhui Province. Acta Petrologica Sinica, 30(4), 1041–1053.

    Google Scholar 

  • Yang, Z. J. (1987). A paleo-fault zone traversing southeastern China. Chinese Journal of Geology, 44(3), 221–230.

    Google Scholar 

  • Yang, S. (2003). Analysis on the prospecting foreground for Pb–Zn deposits in West Hunan. Hunan Geology, 22(02), 107–111.

    Google Scholar 

  • Yang, S., & Lao, K. (2007). Geological characteristics and ore indicators of lead–zinc deposits in northwestern Hunan, China. Geological Bulletin of China, 26(7), 899–908.

    Google Scholar 

  • Yuan, X. M. (2013). Perspectivity reserves at Huyuan-Fenghuang district, Hunan province, China. Mechanical Engineering, 6, 1–11.

    Google Scholar 

  • Zhang, X. Y., Peng, Y. Y., Xiong, Y. W., Cao, S. H., Zou, G. J., Li, C., Zhou, G. X., He, C. P., & Li, H. J. (2013). Report of regional geological survey (1:50,000) in the Huayuan district, Malichang district, Heku district, Duoxi district, People’s Republic of China. Hunan Institute of Geological Survey (pp. 1–426).

  • Zhong, J. S., & Mao, C. M. (2007). Discuss on the characteristics and metallogenic mechanism of MVT lead–zinc deposit in western Hunan. Land & Resources Herald, 4(2), 52–56.

    Google Scholar 

  • Zhu, Y. S. (1997). Prospectivity mapping methods. Beijing: Geological Publish House.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by Project (No. 41672330) from the National Natural Science Foundation of China (NSFC, http://www.nsfc.gov.cn/), Project No. 2017YFC0601501 from the National Key Research and Development Program of China, and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2006BAB01A01). We thank Geomodeller V3.4, MinExplorer V2.0, and Encom ModelVision V14.1 for dealing with all of experiments. The anonymous reviewers are also thanked for their constructive comments, which have helped improve this manuscript. We appreciate the valuable comments of Prof. Mark Jessell and Dr. Mark Lindsay and all the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglong Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Song, X., Li, C. et al. 3D Geological Modeling for Mineral System Approach to GIS-Based Prospectivity Analysis: Case Study of an MVT Pb–Zn Deposit. Nat Resour Res 28, 995–1019 (2019). https://doi.org/10.1007/s11053-018-9429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9429-9

Keywords

Navigation