Natural Resources Research

, Volume 26, Issue 4, pp 457–464 | Cite as

Machine Learning of Mineralization-Related Geochemical Anomalies: A Review of Potential Methods

Review Paper

Abstract

Research on processing geochemical data and identifying geochemical anomalies has made important progress in recent decades. Fractal/multi-fractal models, compositional data analysis, and machine learning (ML) are three widely used techniques in the field of geochemical data processing. In recent years, ML has been applied to model the complex and unknown multivariate geochemical distribution and extract meaningful elemental associations related to mineralization or environmental pollution. It is expected that ML will have a more significant role in geochemical mapping with the development of big data science and artificial intelligence in the near future. In this study, state-of-the-art applications of ML in identifying geochemical anomalies were reviewed, and the advantages and disadvantages of ML for geochemical prospecting were investigated. More applications are needed to demonstrate the advantage of ML in solving complex problems in the geosciences.

Keywords

Geochemical prospecting Geochemical anomalies Fractal model Compositional data analysis Machine learning 

References

  1. Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.CrossRefGoogle Scholar
  2. Agterberg, F. P. (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources, 1, 39–50.CrossRefGoogle Scholar
  3. Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman & Hall.CrossRefGoogle Scholar
  4. Baykan, N. A., & Yılmaz, N. (2010). Mineral identification using color spaces and artificial neural networks. Computers & Geosciences, 36, 91–97.CrossRefGoogle Scholar
  5. Behnia, P. (2007). Application of radial basis functional link networks to exploration for Proterozoic mineral deposits in Central Iran. Natural Resources Research, 16, 147–155.CrossRefGoogle Scholar
  6. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2, 1–127.CrossRefGoogle Scholar
  7. Beucher, A., Österholm, P., Martinkauppi, A., Edén, P., & Fröjdö, S. (2013). Artificial neural network for acid sulfate soil mapping: Application to the Sirppujoki River catchment area, south-western Finland. Journal of Geochemical Exploration, 125, 46–55.CrossRefGoogle Scholar
  8. Bougrain, L., Gonzalez, M., Bouchot, V., Cassard, D., Lips, A. L. W., Alexandre, F., et al. (2003). Knowledge recovery for continental-scale mineral exploration by neural networks. Natural Resources Research, 12, 173–181.CrossRefGoogle Scholar
  9. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.CrossRefGoogle Scholar
  10. Brown, W. M., Gedeon, T. D., & Groves, D. I. (2003a). Use of noise to augment training data: a neural network method of mineral–potential mapping in regions of limited known deposit examples. Natural Resources Research, 12, 141–152.CrossRefGoogle Scholar
  11. Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: a new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757–770.CrossRefGoogle Scholar
  12. Brown, W. M., Groves, D. I., & Gedeon, T. D. (2003b). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12, 183–200.CrossRefGoogle Scholar
  13. Bucciant, A., & Zuo, R. (2016). Weathering reactions and isometric log-ratio coordinates: Do they speak to each other? Applied Geochemistry, 75, 189–199.CrossRefGoogle Scholar
  14. Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.Google Scholar
  15. Carranza, E. J. M. (2010). Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis, 10, 365–381.Google Scholar
  16. Carranza, E. J. M., & Laborte, A. G. (2015a). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.CrossRefGoogle Scholar
  17. Carranza, E. J. M., & Laborte, A. G. (2015b). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.CrossRefGoogle Scholar
  18. Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.CrossRefGoogle Scholar
  19. Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760.CrossRefGoogle Scholar
  20. Chen, C., He, B., & Zeng, Z. (2014a). A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains, China. Earth Science Informatics, 7, 13–24.CrossRefGoogle Scholar
  21. Chen, Y., Lu, L., & Li, X. (2014b). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. Journal of Geochemical Exploration, 140, 56–63.CrossRefGoogle Scholar
  22. Chen, Y., & Wu, W. (2017a). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213.CrossRefGoogle Scholar
  23. Chen, Y., & Wu, W. (2017b). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration, Environment, Analysis. doi:10.1144/geochem2016-024.Google Scholar
  24. Chen, X., Zheng, Y., Xu, R., Wang, H., Jiang, X., Yan, H., et al. (2016). Application of classical statistics and multifractals to delineate Au mineralization-related geochemical anomalies from stream sediment data: a case study in Xinghai-Zeku, Qinghai, China. Geochemistry: Exploration, Environment, Analysis, 6, 253–264.Google Scholar
  25. Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314–324.CrossRefGoogle Scholar
  26. Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.CrossRefGoogle Scholar
  27. Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9, 43–51.CrossRefGoogle Scholar
  28. Cox, D. R., & Snell, E. J. (1989). Analysis of binary data. Boca Raton: CRC Press.Google Scholar
  29. Cracknell, M. J., & Reading, A. M. (2014). Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, 63, 22–33.CrossRefGoogle Scholar
  30. Daneshfar, B., Desrochers, A., & Budkewitsch, P. (2006). Mineral-potential mapping for MVT deposits with limited data sets using Landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research, 15, 129–149.CrossRefGoogle Scholar
  31. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & BarceloVidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.CrossRefGoogle Scholar
  32. Filzmoser, P., Hron, K., & Reimann, C. (2009). Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment, 407, 6100–6108.CrossRefGoogle Scholar
  33. Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.CrossRefGoogle Scholar
  34. Gonbadi, A. B., Tabatabaei, S. H., & Carranza, E. J. M. (2015). Supervised geochemical anomaly detection by pattern recognition. Journal of Geochemical Exploration, 157, 81–91.CrossRefGoogle Scholar
  35. Grunsky, E. C., De Caritat, P., & Mueller, U. A. (2017). Using surface regolith geochemistry to map the major crustal blocks of the Australian continent. Gondwana Research. doi:10.1016/j.gr.2017.02.011.Google Scholar
  36. Grunsky, E. C., & Smee, B. W. (1999). The differentiation of soil types and mineralization from multi-element geochemistry using multivariate methods and digital topography. Journal of Geochemical Exploration, 67, 287–299.CrossRefGoogle Scholar
  37. Harris, D., & Pan, G. (1999). Mineral favorability mapping: a comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8, 93–109.CrossRefGoogle Scholar
  38. Harris, J. R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.CrossRefGoogle Scholar
  39. Harris, D., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research, 12, 241–255.CrossRefGoogle Scholar
  40. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28, 100–108.Google Scholar
  41. Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). New Jersey: Prentice Hall.Google Scholar
  42. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504–507.CrossRefGoogle Scholar
  43. Huang, J., & Zhao, P. (2015). Application of a multi-fractal model for identification of Cu, Au and Zn anomalies in Western Yunnan, Southwestern China. Geochemistry: Exploration, Environment, Analysis, 15, 54–61.CrossRefGoogle Scholar
  44. Kirkwood, C., Cave, M., Beamish, D., Grebby, S., & Ferreira, A. (2016). A machine learning approach to geochemical mapping. Journal of Geochemical Exploration, 167, 49–61.CrossRefGoogle Scholar
  45. Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21, 1–6.CrossRefGoogle Scholar
  46. Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research, 23, 195–215.CrossRefGoogle Scholar
  47. McKinley, J. M., Hron, K., Grunsky, E. C., Reimann, C., De Caritat, P., Filzmoser, P., et al. (2016). The single component geochemical map: Fact or fiction? Journal of Geochemical Exploration, 162, 16–28.CrossRefGoogle Scholar
  48. Mejía-Herrera, P., Royer, J. J., Caumon, G., & Cheilletz, A. (2015). Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials. Natural Resources Research, 24, 275–290.CrossRefGoogle Scholar
  49. Menard, S. (2001). Applied logistic regression analysis (2nd ed.). Thousand Oaks, CA: Sage Publication.Google Scholar
  50. Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29–48.CrossRefGoogle Scholar
  51. Nykänen, V., & Ojala, V. J. (2007). Spatial analysis techniques as successful mineral-potential mapping tools for orogenic gold deposits in the Northern Fennoscandian Shield, Finland. Natural Resources Research, 16, 85–92.CrossRefGoogle Scholar
  52. O’Brien, J. J., Spry, P. G., Nettleton, D., Xu, R., & Teale, G. S. (2015). Using Random Forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb–Zn–Ag deposits in the Broken Hill domain, Australia. Journal of Geochemical Exploration, 149, 74–86.CrossRefGoogle Scholar
  53. Oh, H. J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: a case study of Korea. Natural Resources Research, 19, 103–124.CrossRefGoogle Scholar
  54. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference by Judea Pearl (p. 552). San Mateo, CA: Morgan Kaufmann Publishers Inc.Google Scholar
  55. Porwal, A., & Carranza, E. J. M. (2008). Classifiers for modelling of mineral potential. In O. Pourret, P. Naïm, & B. Marcot (Eds.), Bayesian networks: A practical guide to applications (pp. 149–171). Chichester: John Wiley & Sons.CrossRefGoogle Scholar
  56. Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India. Natural Resources Research, 12, 155–171.CrossRefGoogle Scholar
  57. Porwal, A., Carranza, E. J. M., & Hale, M. (2006). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32, 1–16.CrossRefGoogle Scholar
  58. Raines, G. L., & Mihalasky, M. J. (2002). A reconnaissance method for delineation of tracts for regional-scale mineral-resource assessment based on geologic-map data. Natural Resources Research, 11, 241–248.CrossRefGoogle Scholar
  59. Reddy, R. K. T., & Bonham-Carter, G. F. (1991). A decision-tree approach to mineral potential mapping in Snow Lake area, Manitoba. Canadian Journal of Remote Sensing, 17, 191–200.CrossRefGoogle Scholar
  60. Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R (p. 343). Chichester: Wiley.CrossRefGoogle Scholar
  61. Rigol-Sanchez, J. P., Chica-Olmo, M., & Abarca-Hernandez, F. (2003). Artificial neural networks as a tool for mineral potential mapping with GIS. International Journal of Remote Sensing, 24, 1151–1156.CrossRefGoogle Scholar
  62. Rodriguez-Galiano, V., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographic Information Science, 28, 1336–1354.CrossRefGoogle Scholar
  63. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.CrossRefGoogle Scholar
  64. Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River, NJ, USA: Prentice Hall.Google Scholar
  65. Sahoo, N. R., & Pandalai, H. S. (1999). Integration of sparse geologic information in gold targeting using logistic regression analysis in the Hutti-Maski Schist Belt, Raichur, Karnataka, India—A case study. Natural Resources Research, 8, 233–250.CrossRefGoogle Scholar
  66. Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan. Mathematical Geology, 28, 1017–1023.CrossRefGoogle Scholar
  67. Singer, D. A., & Kouda, R. (1999). A comparison of the weights-of-evidence method and probabilistic neural networks. Natural Resources Research, 8, 287–298.CrossRefGoogle Scholar
  68. Skabar, A. A. (2005). Mapping mineralization probabilities using multilayer perceptrons. Natural Resources Research, 14, 109–123.CrossRefGoogle Scholar
  69. Skabar, A. A. (2007). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geology, 39, 439–451.CrossRefGoogle Scholar
  70. Thompson, S., Fueten, F., & Bockus, D. (2001). Mineral identification using artificial neural networks and the rotating polarizer stage. Computers & Geosciences, 27, 1081–1089.CrossRefGoogle Scholar
  71. Twarakavi, N. K. C., Misra, D., & Bandopadhyay, S. (2006). Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research, 15, 15–26.CrossRefGoogle Scholar
  72. Vapnik, V. (1995). Nature of statistical learning theory. New York: Wiley.CrossRefGoogle Scholar
  73. Xiong, Y., & Zuo, R. (2016a). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86, 75–82.CrossRefGoogle Scholar
  74. Xiong, Y., & Zuo, R. (2016b). A comparative study of two modes for mapping felsic intrusions using geoinformatics. Applied Geochemistry, 75, 277–283.CrossRefGoogle Scholar
  75. Xiong, Y., & Zuo, R. (2017). Effects of misclassification costs on mapping mineral prospectivity. Ore Geology Reviews, 82, 1–9.CrossRefGoogle Scholar
  76. Zaremotlagh, S., & Hezarkhani, A. (2017). The use of decision tree induction and artificial neural networks for recognizing the geochemical distribution patterns of LREE in the Choghart deposit, Central Iran. Journal of African Earth Sciences, 128, 37–46.CrossRefGoogle Scholar
  77. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556–572.CrossRefGoogle Scholar
  78. Zhao, J., Chen, S., & Zuo, R. (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164, 54–64.CrossRefGoogle Scholar
  79. Zhao, J., Chen, S., & Zuo, R. (2017). Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models. Geochemistry: Exploration, Environment, Analysis. doi:10.1144/geochem2016-013.Google Scholar
  80. Zhou, L., Pan, S., Wang, J., & Vasilakos, A. S. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350–361.CrossRefGoogle Scholar
  81. Zuo, R. (2011). Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Applied Geochemistry, 26, S271–S273.CrossRefGoogle Scholar
  82. Zuo, R. (2014). Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139, 170–176.CrossRefGoogle Scholar
  83. Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: a tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975.CrossRefGoogle Scholar
  84. Zuo, R., Carranza, E. J. M., & Wang, J. (2016). Spatial analysis and visualization of exploration geochemical data. Earth-Science Reviews, 158, 9–18.CrossRefGoogle Scholar
  85. Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identification local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration, 101, 225–235.CrossRefGoogle Scholar
  86. Zuo, R., & Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33–41.CrossRefGoogle Scholar
  87. Zuo, R., Wang, J., Chen, G., & Yang, M. (2015). Identification of weak anomalies: A multifractal perspective. Journal of Geochemical Exploration, 148, 12–24.CrossRefGoogle Scholar
  88. Zuo, R., Xia, Q., & Wang, H. (2013a). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied Geochemistry, 28, 202–211.CrossRefGoogle Scholar
  89. Zuo, R., Xia, Q., & Zhang, D. (2013b). A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas. Applied Geochemistry, 33, 165–172.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations