Skip to main content
Log in

Analysis of Zoning Pattern of Geochemical Indicators for Targeting of Porphyry-Cu Mineralization: A Pixel-Based Mapping Approach

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this paper, a pixel-based mapping of geochemical anomalies is proposed to avoid estimation errors resulting from using interpolation methods in the modeling of anomalies. The pixel-based method is a discrete field modeling of geochemical landscapes for mapping lithogeochemical anomalies. In this method, the influence area of each composite rock sample is the whole area covered by a pixel where the materials of the sample were taken from. In addition to the pixel-based method, because delineation of mineral exploration target areas using geochemical data is a challenging task, the application of metal zoning concept is demonstrated for vectoring into porphyry mineralization systems. In this regard, different geochemical signatures of the deposit-type sought were mapped in a model. Application of the proposed pixel-based method and the metal zoning concept is a powerful tool for targeting areas with potential for porphyry copper deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abdolmaleki, M., Mokhtari, A., Akbar, S., Alipour-Asll, M., & Carranza, E. J. M. (2014). Catchment basin analysis of stream sediment geochemical data: Incorporation of slope effect. Journal of Geochemical Exploration, 140, 96–103.

    Article  Google Scholar 

  • Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., & Lu, Y. (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper–gold potential in central Iran. Ore Geology Reviews, 71, 819–838.

    Article  Google Scholar 

  • Babcock, R. C., Jr., Ballantyne, G. H., & Phillips, C. H. (1995). Summary of the geology of the Bingham district. Arizona Geological Society Digest, 20, 316–335.

    Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic Information Systems for Geoscientists: Modelling with GIS. Oxford: Pergamon.

    Google Scholar 

  • Bonham-Carter, G. F., & Goodfellow, W. D. (1984). Autocorrelation structure of stream sediment geochemical data: Interpretation of Zn and Pb anomalies, Nahanni river area, Yukon—Northwest Territories, Canada. In G. Verly, M. David, A. G. Journel, & A. Marechal (Eds.), Geostatistics for natural resources characterization. Part 2 (pp. 817–829). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Bonham-Carter, G. F., & Goodfellow, W. D. (1986). Background corrections to stream geochemical data using digitized drainage and geological maps: Application to Selwyn Basin, Yukon and Northwest Territories. Journal of Geochemical Exploration, 25, 139–155.

    Article  Google Scholar 

  • Bonham-Carter, G. F., Rogers, P. J., & Ellwood, D. J. (1987). Catchment basin analysis applied to surficial geochemical data, Cobequid Highlands, Nova Scotia. Journal of Geochemical Exploration, 29, 259–278.

    Article  Google Scholar 

  • Carranza, E. J. M. (2004). Usefulness of stream order to detect stream sediment geochemical anomalies. Geochemistry: Exploration, Environment, Analysis, 4, 341–352.

    Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2009). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35, 2032–2046.

    Article  Google Scholar 

  • Carranza, E. J. M. (2010a). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis, 10, 171–187.

    Google Scholar 

  • Carranza, E. J. M. (2010b). Catchment basin modeling of stream sediment anomalies revisited: Incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis, 10, 365–381.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (1997). A catchment basin approach to the analysis of geochemical–geological data from Albay Province, Philippines. Journal of Geochemical Exploration, 60, 157–171.

    Article  Google Scholar 

  • Carranza, E. J. M., & Sadeghi, M. (2010). Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews, 38, 219–241.

    Article  Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314–324.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.

    Article  Google Scholar 

  • Cicchella, D., Lima, A., Birke, M., Demetriades, A., Wang, X., & De Vivo, B. (2013). Mapping geochemical patterns at regional to continental scales using composite samples to reduce the analytical costs. Journal of Geochemical Exploration, 124, 79–91.

    Article  Google Scholar 

  • Costa, M. L., & Araujo, E. S. (1996). Application of multi-element geochemistry in Au-phosphate-bearing lateritic crusts for identification of their parent rocks. Journal of Geochemical Exploration, 57, 257–272.

    Article  Google Scholar 

  • El-Makky, A. M., & Sediek, K. N. (2012). Stream sediments geochemical exploration in the Northwestern Part of Wadi Allaqi Area, South Eastern Desert, Egypt. Natural Resources Research, 21, 95–115.

    Article  Google Scholar 

  • ESRI. (2004). ArcGIS9-ArcGIS Desktop Developer Guide (329 pp).

  • Govett, G. J. S. (1983). Rock geochemistry in mineral exploration—Handbook of exploration geochemistry (Vol. 3, pp. 181–225). New York: Elsevier.

    Book  Google Scholar 

  • Grigorian, S. V. (1992). Mining geochemistry. Moscow: Nedra Publishing House. (in Russian).

    Google Scholar 

  • Grunsky, E. C. (1986). Recognition of alteration in volcanic rocks using statistical analysis of lithogeochemical data. Journal of Geochemical Exploration, 25, 157–183.

    Article  Google Scholar 

  • Grunsky, E. C., Drew, L. J., & Sutphin, D. M. (2009). Process recognition in multi-element soil and stream-sediment geochemical data. Applied Geochemistry, 24, 1602–1616.

    Article  Google Scholar 

  • Harris, J. R., Wilkinson, L., & Grunsky, E. C. (2000). Effective use and interpretation of lithogeochemical data in regional mineral exploration programs: Application of Geographic Information Systems (GIS) technology. Journal of Geochemical Exploration, 16, 107–143.

    Google Scholar 

  • He, J., Yao, S., Zhang, Z., & You, G. (2013). Complexity and productivity differentiation models of metallogenic indicator elements in rocks and supergene media around Daijiazhuang Pb–Zn deposit in Dangchang County, Gansu Province. Natural Resources Research, 22, 19–36.

    Article  Google Scholar 

  • Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32, 1283–1298.

    Article  Google Scholar 

  • Hu, S., Cheng, Q., Wang, L., & Xu, D. (2013). Modeling land price distribution using multifractal IDW interpolation and fractal filtering method. Landscape and Urban Planning, 110, 25–35.

    Article  Google Scholar 

  • Jerome, S. E. (1966). Some features pertinent in exploration of porphyry copper deposits. In S. R. Titley & C. L. Hicks (Eds.), Geology of the porphyry copper deposits, southwestern North America (pp. 75–85). Tucson: University of Arizona Press.

    Google Scholar 

  • Kitaev, N. A. (1991). Multidimensional analysis of geochemical fields. Mathematical Geology, 23, 15–32.

    Article  Google Scholar 

  • Lang, J. R., & Eastoe, C. J. (1988). Relationships between a porphyry Cu–Mo deposit, base and precious metal veins, and Laramide intrusions, Mineral Park, Arizona. Economic Geology, 83, 551–567.

    Article  Google Scholar 

  • Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu- and Zn-soil anomalies in the NE Border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research, 23, 195–215.

    Article  Google Scholar 

  • Meinert, L. D., Dipple, G. M., & Nicolescu, S. (2005). World skarn deposits. Economic Geology, 100, 299–336.

    Google Scholar 

  • Moon, C. J. (1999). Towards a quantitative model of downstream dilution of point source geochemical anomalies. Journal of Geochemical Exploration, 65, 111–132.

    Article  Google Scholar 

  • Nude, P. M., & Arhin, E. (2009). Overbank sediments as appropriate geochemical sample media in regional stream sediment surveys for gold exploration in the savannah regions of Northern Ghana. Journal of Geochemical Exploration, 103, 50–56.

    Article  Google Scholar 

  • Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008). Reconnaissance scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 25–38.

    Article  Google Scholar 

  • Ohta, A., Imai, N., Terashima, S., & Tachibana, Y. (2005). Influence of surface geology and mineral deposits on the spatial distributions of elemental concentrations in the stream sediments of Hokkaido, Japan. Journal of Geochemical Exploration, 86, 86–103.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Carranza, E. J. M. (2016a). Multifractal interpolation and spectrum-area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets. Journal of African Earth Sciences. doi:10.1016/j.jafrearsci.2016.11.021.

    Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016b). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228–241.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016c). Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165, 111–124.

    Article  Google Scholar 

  • Philip, G. M., & Watson, D. F. (1982). A precise method for determining contoured surfaces. Australian Petroleum Exploration Association Journal, 22, 205–212.

    Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1–16.

    Article  Google Scholar 

  • Rugless, C. S., & Teale, G. S. (1987). Lithogeochemical exploration for polymetallic Sn–Cu–Ag–Au–Pb–Zn vein mineralization at north Mammoth prospect, northeast Victoria, Australia. Journal of Geochemical Exploration, 28, 149–163.

    Article  Google Scholar 

  • Selinus, O. (1981). Lithogeochemical exploration data in sulphide prospecting in northern Sweden. Journal of Geochemical Exploration, 15, 181–201.

    Article  Google Scholar 

  • Selinus, O. (1983). Factor and discriminate analysis to lithogeochemical prospecting in an area of central Sweden. Journal of Geochemical Exploration, 19, 619–642.

    Article  Google Scholar 

  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105, 3–41.

    Article  Google Scholar 

  • Solovov, A. P. (1987). Geochemical prospecting for mineral deposits (V. V. Kuznetsov, Trans.; Engl. ed.). Moscow: Mir.

  • Solovov, A. P. (1990). Handbook on geochemical prospecting for useful minerals. Moscow: Nedra Publishing House. (in Russian).

    Google Scholar 

  • Spadoni, M. (2006). Geochemical mapping using a geomorphologic approach based on catchments. Journal of Geochemical Exploration, 90, 183–196.

    Article  Google Scholar 

  • Spadoni, M., Cavarretta, G., & Patera, A. (2004). Cartographic techniques for mapping the geochemical data of stream sediments: The “sample catchment basin” approach. Environmental Geology, 45, 593–599.

    Article  Google Scholar 

  • Thompson, M., & Howarth, R. J. (1976). Duplicate analysis in geochemical practice. Part 1: Theoretical approach and estimation of analytical reproducibility. Analyst, 101, 690–698.

    Article  Google Scholar 

  • Titley, S. R. (1993). Characteristics of porphyry copper occurrence in the American Southwest. Geological Association of Canada Special Paper, 40, 433–464.

    Google Scholar 

  • Twarakavi, N. K. C., Misra, D., & Bandopadhyay, S. (2006). Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research, 15, 15–26.

    Article  Google Scholar 

  • Van Loon, A. J. (2002). The complexity of simple geology. Earth-Science Reviews, 59, 287–295.

    Article  Google Scholar 

  • Xie, S., Cheng, Q., Xing, X., Bao, Z., & Chen, Z. (2010). Geochemical multifractal distribution patterns in sediments from ordered streams. Geoderma, 160, 36–46.

    Article  Google Scholar 

  • Yilmaz, H. (2003). Geochemical exploration for gold in western Turkey: Success and failure. Journal of Geochemical Exploration, 80, 117–135.

    Article  Google Scholar 

  • Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Prediction-area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015c). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016a). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016b). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences. doi:10.1016/j.jafrearsci.2016.04.019.

    Google Scholar 

  • Yousefi, M., Carranza, E. J. M., & Kamkar-Rouhani, A. (2013). Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. Journal of Geochemical Exploration, 128, 88–96.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environmental, Analysis, 14, 45–58.

    Google Scholar 

  • Ziaii, M., Abedi, A., & Ziaei, M. (2009). Geochemical and mineralogical pattern recognition and modeling with a Bayesian approach to hydrothermal gold deposits. Journal of Applied Geochemistry, 24, 1142–1146.

    Article  Google Scholar 

  • Ziaii, M., Carranza, E. J. M., & Ziaii, M. (2011). Application of geochemical zonality coefficients in mineral prospectivity mapping. Computers & Geosciences, 37, 1935–1945.

    Article  Google Scholar 

  • Zuo, R. (2012). Exploring the effects of cell size in geochemical mapping. Journal of Geochemical Exploration, 112, 357–367.

    Article  Google Scholar 

  • Zuo, R., Agterberg, F. P., Cheng, Q., & Yao, L. (2009a). Fractal characterization of the spatial distribution of geological point processes. International Journal of Applied Earth Observation and Geoinformation, 11, 394–402.

    Article  Google Scholar 

  • Zuo, R., & Cheng, Q. (2008). Mapping singularities: A technique to identify potential Cu mineral deposits using sediment geochemical data, an example for Tibet, west China. Mineralogical Magazine, 72, 531–534.

    Article  Google Scholar 

  • Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009b). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101, 225–235.

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Mr. Babaie, head of exploration department of National Iranian Copper Industries Company (NICICO), for some supports. The author thanks Parsolang consulting engineering company, especially Mr. Sahebzamani for supplying necessary material to do this research work. The author thanks Kanazin and Zarnab consulting engineering companies because the field operations were carried out by senior geologists at these companies. The author thanks John Carranza and three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahyar Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, M. Analysis of Zoning Pattern of Geochemical Indicators for Targeting of Porphyry-Cu Mineralization: A Pixel-Based Mapping Approach. Nat Resour Res 26, 429–441 (2017). https://doi.org/10.1007/s11053-017-9334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-017-9334-7

Keywords

Navigation