Natural Resources Research

, Volume 26, Issue 4, pp 429–441 | Cite as

Analysis of Zoning Pattern of Geochemical Indicators for Targeting of Porphyry-Cu Mineralization: A Pixel-Based Mapping Approach

Original Paper

Abstract

In this paper, a pixel-based mapping of geochemical anomalies is proposed to avoid estimation errors resulting from using interpolation methods in the modeling of anomalies. The pixel-based method is a discrete field modeling of geochemical landscapes for mapping lithogeochemical anomalies. In this method, the influence area of each composite rock sample is the whole area covered by a pixel where the materials of the sample were taken from. In addition to the pixel-based method, because delineation of mineral exploration target areas using geochemical data is a challenging task, the application of metal zoning concept is demonstrated for vectoring into porphyry mineralization systems. In this regard, different geochemical signatures of the deposit-type sought were mapped in a model. Application of the proposed pixel-based method and the metal zoning concept is a powerful tool for targeting areas with potential for porphyry copper deposits.

Keywords

Exploration targets Lithogeochemical data Geochemical indicators Metal zoning patterns Porphyry Cu Pixel-based model 

References

  1. Abdolmaleki, M., Mokhtari, A., Akbar, S., Alipour-Asll, M., & Carranza, E. J. M. (2014). Catchment basin analysis of stream sediment geochemical data: Incorporation of slope effect. Journal of Geochemical Exploration, 140, 96–103.CrossRefGoogle Scholar
  2. Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., & Lu, Y. (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper–gold potential in central Iran. Ore Geology Reviews, 71, 819–838.CrossRefGoogle Scholar
  3. Babcock, R. C., Jr., Ballantyne, G. H., & Phillips, C. H. (1995). Summary of the geology of the Bingham district. Arizona Geological Society Digest, 20, 316–335.Google Scholar
  4. Bonham-Carter, G. F. (1994). Geographic Information Systems for Geoscientists: Modelling with GIS. Oxford: Pergamon.Google Scholar
  5. Bonham-Carter, G. F., & Goodfellow, W. D. (1984). Autocorrelation structure of stream sediment geochemical data: Interpretation of Zn and Pb anomalies, Nahanni river area, Yukon—Northwest Territories, Canada. In G. Verly, M. David, A. G. Journel, & A. Marechal (Eds.), Geostatistics for natural resources characterization. Part 2 (pp. 817–829). Dordrecht: Reidel.CrossRefGoogle Scholar
  6. Bonham-Carter, G. F., & Goodfellow, W. D. (1986). Background corrections to stream geochemical data using digitized drainage and geological maps: Application to Selwyn Basin, Yukon and Northwest Territories. Journal of Geochemical Exploration, 25, 139–155.CrossRefGoogle Scholar
  7. Bonham-Carter, G. F., Rogers, P. J., & Ellwood, D. J. (1987). Catchment basin analysis applied to surficial geochemical data, Cobequid Highlands, Nova Scotia. Journal of Geochemical Exploration, 29, 259–278.CrossRefGoogle Scholar
  8. Carranza, E. J. M. (2004). Usefulness of stream order to detect stream sediment geochemical anomalies. Geochemistry: Exploration, Environment, Analysis, 4, 341–352.Google Scholar
  9. Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.Google Scholar
  10. Carranza, E. J. M. (2009). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35, 2032–2046.CrossRefGoogle Scholar
  11. Carranza, E. J. M. (2010a). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis, 10, 171–187.Google Scholar
  12. Carranza, E. J. M. (2010b). Catchment basin modeling of stream sediment anomalies revisited: Incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis, 10, 365–381.Google Scholar
  13. Carranza, E. J. M., & Hale, M. (1997). A catchment basin approach to the analysis of geochemical–geological data from Albay Province, Philippines. Journal of Geochemical Exploration, 60, 157–171.CrossRefGoogle Scholar
  14. Carranza, E. J. M., & Sadeghi, M. (2010). Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews, 38, 219–241.CrossRefGoogle Scholar
  15. Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314–324.CrossRefGoogle Scholar
  16. Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.CrossRefGoogle Scholar
  17. Cicchella, D., Lima, A., Birke, M., Demetriades, A., Wang, X., & De Vivo, B. (2013). Mapping geochemical patterns at regional to continental scales using composite samples to reduce the analytical costs. Journal of Geochemical Exploration, 124, 79–91.CrossRefGoogle Scholar
  18. Costa, M. L., & Araujo, E. S. (1996). Application of multi-element geochemistry in Au-phosphate-bearing lateritic crusts for identification of their parent rocks. Journal of Geochemical Exploration, 57, 257–272.CrossRefGoogle Scholar
  19. El-Makky, A. M., & Sediek, K. N. (2012). Stream sediments geochemical exploration in the Northwestern Part of Wadi Allaqi Area, South Eastern Desert, Egypt. Natural Resources Research, 21, 95–115.CrossRefGoogle Scholar
  20. ESRI. (2004). ArcGIS9-ArcGIS Desktop Developer Guide (329 pp).Google Scholar
  21. Govett, G. J. S. (1983). Rock geochemistry in mineral exploration—Handbook of exploration geochemistry (Vol. 3, pp. 181–225). New York: Elsevier.CrossRefGoogle Scholar
  22. Grigorian, S. V. (1992). Mining geochemistry. Moscow: Nedra Publishing House. (in Russian).Google Scholar
  23. Grunsky, E. C. (1986). Recognition of alteration in volcanic rocks using statistical analysis of lithogeochemical data. Journal of Geochemical Exploration, 25, 157–183.CrossRefGoogle Scholar
  24. Grunsky, E. C., Drew, L. J., & Sutphin, D. M. (2009). Process recognition in multi-element soil and stream-sediment geochemical data. Applied Geochemistry, 24, 1602–1616.CrossRefGoogle Scholar
  25. Harris, J. R., Wilkinson, L., & Grunsky, E. C. (2000). Effective use and interpretation of lithogeochemical data in regional mineral exploration programs: Application of Geographic Information Systems (GIS) technology. Journal of Geochemical Exploration, 16, 107–143.Google Scholar
  26. He, J., Yao, S., Zhang, Z., & You, G. (2013). Complexity and productivity differentiation models of metallogenic indicator elements in rocks and supergene media around Daijiazhuang Pb–Zn deposit in Dangchang County, Gansu Province. Natural Resources Research, 22, 19–36.CrossRefGoogle Scholar
  27. Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32, 1283–1298.CrossRefGoogle Scholar
  28. Hu, S., Cheng, Q., Wang, L., & Xu, D. (2013). Modeling land price distribution using multifractal IDW interpolation and fractal filtering method. Landscape and Urban Planning, 110, 25–35.CrossRefGoogle Scholar
  29. Jerome, S. E. (1966). Some features pertinent in exploration of porphyry copper deposits. In S. R. Titley & C. L. Hicks (Eds.), Geology of the porphyry copper deposits, southwestern North America (pp. 75–85). Tucson: University of Arizona Press.Google Scholar
  30. Kitaev, N. A. (1991). Multidimensional analysis of geochemical fields. Mathematical Geology, 23, 15–32.CrossRefGoogle Scholar
  31. Lang, J. R., & Eastoe, C. J. (1988). Relationships between a porphyry Cu–Mo deposit, base and precious metal veins, and Laramide intrusions, Mineral Park, Arizona. Economic Geology, 83, 551–567.CrossRefGoogle Scholar
  32. Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu- and Zn-soil anomalies in the NE Border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research, 23, 195–215.CrossRefGoogle Scholar
  33. Meinert, L. D., Dipple, G. M., & Nicolescu, S. (2005). World skarn deposits. Economic Geology, 100, 299–336.Google Scholar
  34. Moon, C. J. (1999). Towards a quantitative model of downstream dilution of point source geochemical anomalies. Journal of Geochemical Exploration, 65, 111–132.CrossRefGoogle Scholar
  35. Nude, P. M., & Arhin, E. (2009). Overbank sediments as appropriate geochemical sample media in regional stream sediment surveys for gold exploration in the savannah regions of Northern Ghana. Journal of Geochemical Exploration, 103, 50–56.CrossRefGoogle Scholar
  36. Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008). Reconnaissance scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 25–38.CrossRefGoogle Scholar
  37. Ohta, A., Imai, N., Terashima, S., & Tachibana, Y. (2005). Influence of surface geology and mineral deposits on the spatial distributions of elemental concentrations in the stream sediments of Hokkaido, Japan. Journal of Geochemical Exploration, 86, 86–103.CrossRefGoogle Scholar
  38. Parsa, M., Maghsoudi, A., Yousefi, M., & Carranza, E. J. M. (2016a). Multifractal interpolation and spectrum-area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets. Journal of African Earth Sciences. doi:10.1016/j.jafrearsci.2016.11.021.Google Scholar
  39. Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016b). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228–241.CrossRefGoogle Scholar
  40. Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016c). Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165, 111–124.CrossRefGoogle Scholar
  41. Philip, G. M., & Watson, D. F. (1982). A precise method for determining contoured surfaces. Australian Petroleum Exploration Association Journal, 22, 205–212.Google Scholar
  42. Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1–16.CrossRefGoogle Scholar
  43. Rugless, C. S., & Teale, G. S. (1987). Lithogeochemical exploration for polymetallic Sn–Cu–Ag–Au–Pb–Zn vein mineralization at north Mammoth prospect, northeast Victoria, Australia. Journal of Geochemical Exploration, 28, 149–163.CrossRefGoogle Scholar
  44. Selinus, O. (1981). Lithogeochemical exploration data in sulphide prospecting in northern Sweden. Journal of Geochemical Exploration, 15, 181–201.CrossRefGoogle Scholar
  45. Selinus, O. (1983). Factor and discriminate analysis to lithogeochemical prospecting in an area of central Sweden. Journal of Geochemical Exploration, 19, 619–642.CrossRefGoogle Scholar
  46. Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105, 3–41.CrossRefGoogle Scholar
  47. Solovov, A. P. (1987). Geochemical prospecting for mineral deposits (V. V. Kuznetsov, Trans.; Engl. ed.). Moscow: Mir.Google Scholar
  48. Solovov, A. P. (1990). Handbook on geochemical prospecting for useful minerals. Moscow: Nedra Publishing House. (in Russian).Google Scholar
  49. Spadoni, M. (2006). Geochemical mapping using a geomorphologic approach based on catchments. Journal of Geochemical Exploration, 90, 183–196.CrossRefGoogle Scholar
  50. Spadoni, M., Cavarretta, G., & Patera, A. (2004). Cartographic techniques for mapping the geochemical data of stream sediments: The “sample catchment basin” approach. Environmental Geology, 45, 593–599.CrossRefGoogle Scholar
  51. Thompson, M., & Howarth, R. J. (1976). Duplicate analysis in geochemical practice. Part 1: Theoretical approach and estimation of analytical reproducibility. Analyst, 101, 690–698.CrossRefGoogle Scholar
  52. Titley, S. R. (1993). Characteristics of porphyry copper occurrence in the American Southwest. Geological Association of Canada Special Paper, 40, 433–464.Google Scholar
  53. Twarakavi, N. K. C., Misra, D., & Bandopadhyay, S. (2006). Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research, 15, 15–26.CrossRefGoogle Scholar
  54. Van Loon, A. J. (2002). The complexity of simple geology. Earth-Science Reviews, 59, 287–295.CrossRefGoogle Scholar
  55. Xie, S., Cheng, Q., Xing, X., Bao, Z., & Chen, Z. (2010). Geochemical multifractal distribution patterns in sediments from ordered streams. Geoderma, 160, 36–46.CrossRefGoogle Scholar
  56. Yilmaz, H. (2003). Geochemical exploration for gold in western Turkey: Success and failure. Journal of Geochemical Exploration, 80, 117–135.CrossRefGoogle Scholar
  57. Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.CrossRefGoogle Scholar
  58. Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.CrossRefGoogle Scholar
  59. Yousefi, M., & Carranza, E. J. M. (2015b). Prediction-area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.CrossRefGoogle Scholar
  60. Yousefi, M., & Carranza, E. J. M. (2015c). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.CrossRefGoogle Scholar
  61. Yousefi, M., & Carranza, E. J. M. (2016a). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.CrossRefGoogle Scholar
  62. Yousefi, M., & Carranza, E. J. M. (2016b). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences. doi:10.1016/j.jafrearsci.2016.04.019.Google Scholar
  63. Yousefi, M., Carranza, E. J. M., & Kamkar-Rouhani, A. (2013). Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. Journal of Geochemical Exploration, 128, 88–96.CrossRefGoogle Scholar
  64. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.CrossRefGoogle Scholar
  65. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environmental, Analysis, 14, 45–58.Google Scholar
  66. Ziaii, M., Abedi, A., & Ziaei, M. (2009). Geochemical and mineralogical pattern recognition and modeling with a Bayesian approach to hydrothermal gold deposits. Journal of Applied Geochemistry, 24, 1142–1146.CrossRefGoogle Scholar
  67. Ziaii, M., Carranza, E. J. M., & Ziaii, M. (2011). Application of geochemical zonality coefficients in mineral prospectivity mapping. Computers & Geosciences, 37, 1935–1945.CrossRefGoogle Scholar
  68. Zuo, R. (2012). Exploring the effects of cell size in geochemical mapping. Journal of Geochemical Exploration, 112, 357–367.CrossRefGoogle Scholar
  69. Zuo, R., Agterberg, F. P., Cheng, Q., & Yao, L. (2009a). Fractal characterization of the spatial distribution of geological point processes. International Journal of Applied Earth Observation and Geoinformation, 11, 394–402.CrossRefGoogle Scholar
  70. Zuo, R., & Cheng, Q. (2008). Mapping singularities: A technique to identify potential Cu mineral deposits using sediment geochemical data, an example for Tibet, west China. Mineralogical Magazine, 72, 531–534.CrossRefGoogle Scholar
  71. Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009b). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101, 225–235.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringMalayer UniversityMalayerIran

Personalised recommendations