Skip to main content
Log in

Spatial Pair-Copula Modeling of Grade in Ore Bodies: A Case Study

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

A real-world mining application of pair-copulas is presented to model the spatial distribution of metal grade in an ore body. Inaccurate estimation of metal grade in an ore reserve can lead to failure of a mining project. Conventional kriged models are the most commonly used models for estimating grade and other spatial variables. However, kriged models use the variogram or covariance function, which produces a single average value to represent the spatial dependence for a given distance. Kriged models also assume linear spatial dependence. In the application, spatial pair-copulas are used to appropriately model the non-linear spatial dependence present in the data. The spatial pair-copula model is adopted over other copula-based spatial models since it is better able to capture complex spatial dependence structures. The performance of the pair-copula model is shown to be favorable compared to a conventional lognormal kriged model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182–198.

    Google Scholar 

  • Bárdossy, A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resources Research, 42(11), W11416.

    Article  Google Scholar 

  • Bárdossy, A., & Li, J. (2008). Geostatistical interpolation using copulas. Water Resources Research, 44(7), W07412.

    Article  Google Scholar 

  • Bedford, T., & Cooke, R. M. (2002). Vines: A new graphical model for dependent random variables. The Annals of Statistics, 30(4), 1031–1068.

    Article  Google Scholar 

  • Boardman, R. C., & Vann, J. E. (2011). A review of the application of copulas to improve modelling of non-bigaussian bivariate relationships (with an example using geological data). In F. Chan, D. Marinova, & R. S. Anderssen (Eds.), Proceedings of the 19th International Congress on Modelling and Simulation (MODSIM2011) (pp. 627–633). Perth: Modelling and Simulation Society of Australia and New Zealand (MSSANZ). http://www.mssanz.org.au/modsim2011/A9/boardman.pdf.

  • Diggle, P. J., & Ribeiro, P. J. (2007). Classical parameter estimation. Model-based geostatistics (pp. 99–133). New York: Springer.

    Google Scholar 

  • Erhardt, T. M., Czado, C., & Schepsmeier, U. (2015a). R-vine models for spatial time series with an application to daily mean temperature. Biometrics, 71(2), 323–332.

    Article  Google Scholar 

  • Erhardt, T. M., Czado, C., & Schepsmeier, U. (2015b). Spatial composite likelihood inference using local C-vines. Journal of Multivariate Analysis, 138, 74–88.

    Article  Google Scholar 

  • Gaetan, C., & Guyon, X. (2010). Second-order spatial models and geostatistics. Spatial statistics and modeling (pp. 1–52). New York: Springer.

    Chapter  Google Scholar 

  • Genest, C., & Rivest, L. (1993). Statistical inference procedures for bivariate Archimedian copulas. Journal of the American Statistical Association, 88(423), 1034–1043.

    Article  Google Scholar 

  • Getis, A. (2007). Reflections on spatial autocorrelation. Regional Science and Urban Economics, 37(4), 491–496.

    Article  Google Scholar 

  • Gräler, B. (2014). Modelling skewed spatial random fields through the spatial vine copula. Spatial Statistics, 10, 87–102.

    Article  Google Scholar 

  • Gräler, B., & Appel, M. (2015). ‘spcopula’. http://r-forge.r-project.org/projects/spcopula/.

  • Gräler, B., & Pebesma, E. (2011). The pair-copula construction for spatial data: A new approach to model spatial dependency. Procedia Environmental Sciences, 7, 206–211.

    Article  Google Scholar 

  • Haff, I. H., Aas, K., & Frigessi, A. (2009). On the simplified pair-copula construction-simply useful or too simplistic? Journal of Multivariate Analysis, 101(5), 1296–1310.

    Article  Google Scholar 

  • Haslauer, C. P., Li, J., & Bárdossy, A. (2010). Application of copulas in geostatistics. In P. M. Atkinson & C. D. Lloyd (Eds.), geoENV VII-geostatistics for environmental applications (pp. 395–404). Berlin: Springer.

    Chapter  Google Scholar 

  • Joe, H. (1996). Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In L. Riischendorf, B. Schweizer, & M. D. Taylor (Eds.), Distributions with fixed marginal and related topics (pp. 120–141)., Lecture notes-monograph series Kolkata: Institute of Mathematical Statistics.

    Chapter  Google Scholar 

  • Journal, A. G., & Alabert, F. (2007). Non-Gaussian data expansion in the Earth Sciences. Terra Nova, 1(2), 123–134.

    Article  Google Scholar 

  • Kazianka, H., & Pilz, J. (2010). Copula-based geostatistical modeling of continuous and discrete data including covariates. Stochastic Environmental Research and Risk Assessment, 24(5), 661–673.

    Article  Google Scholar 

  • Kazianka, H., & Pilz, J. (2011). Bayesian spatial modeling and interpolation using copulas. Computers & Geosciences, 37(3), 310–319.

    Article  Google Scholar 

  • Khosrowshahi, S., & Shaw, W. (2001). Conditional simulation for resource characterization and grade control. In A. C. Edwards (Ed.), Mineral Resource and Ore Reserve Estimation - The AusIMM Guide to Good Practice. Australasian Institute of Mining and Metallurgy (AusIMM) (pp. 285–292).

  • Kurowicka, D., & Cooke, R. (2006). Uncertainty analysis with high dimensional dependence modelling. Chichester: Wiley.

    Book  Google Scholar 

  • Li, J. (2010). Application of copulas as a new geostatistical tool. Ph.D dissertation. Institute for Water and Environmental System Modeling. University of Stuttgart. doi:10.18419/opus-332

  • Marchant, B. P., Saby, N. P. A., Jolivet, C. C., Arrouays, D., & Lark, R. M. (2011). Spatial prediction of soil properties with copulas. Geoderma, 162(3–4), 327–334.

    Article  Google Scholar 

  • Mclennan, J. A., & Deutsch, C. V. (2004). Conditional non-bias of geostatistical simulation for estimation of recoverable reserves. CIM Bulletin, 97(1080), 68–72.

    Google Scholar 

  • Musafer, G. N., & Thompson, M. H. (2016a). Non-linear optimal multivariate spatial design using pair-copulas. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-016-1307-6.

  • Musafer, G. N., & Thompson, M. H. (2016b). Optimal adaptive sequential spatial sampling of soil using pair-copulas. Geoderma, 271, 124–133.

    Article  Google Scholar 

  • Musafer, G. N., Thompson, M. H., Kozan, E., & Wolff, R. C. (2013). Copula-based spatial modelling of geometallurgical variables. In S. Dominy (Ed.), Proceedings of The Second AusIMM International Geometallurgy Conference (GeoMet2013) (pp. 239–246). Brisbane: Australasian Institute of Mining and Metallurgy (AusIMM).

  • Nelsen, R. B. (2006). An introduction to copulas. New York: Springer.

    Google Scholar 

  • Peattie, R., & Dimitrakopoulos, R. (2013). Forecasting recoverable ore reserves and their uncertainty at Morila Gold Deposit, Mali: An efficient simulation approach and future grade control drilling. Mathematical Geosciences, 45(8), 1005–1020.

    Article  Google Scholar 

  • R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. https://www.r-project.org/.

  • Seo, D. J. (2013). Conditional bias-penalized kriging (CBPK). Stochastic Environmental Research and Risk Assessment, 27(1), 43–58.

    Article  Google Scholar 

  • Sklar, A. (1959). Fonctions de répartition á n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris, 8, 229–231.

    Google Scholar 

  • Trivedi, P. K., & Zimmer, D. M. (2007). Copula modeling: An introduction for practitioners. Boston: Now.

    Google Scholar 

  • Vann, J., & Guibal, D. (2001). Beyond ordinary kriging: An overview of non-linear estimation. In A. C. Edwards (Ed.), Mineral resource and ore reserve estimation-the AusIMM guide to good practice (pp. 249–256). Carlton: Australasian Institute of Mining and Metallurgy (AusIMM).

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Government’s Cooperative Research Centre for Optimising Resource Extraction Grant P3C-030. The authors thank the reviewers for their comments and guidance, which greatly improved discussion and practical aspects of the application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Helen Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musafer, G.N., Thompson, M.H., Kozan, E. et al. Spatial Pair-Copula Modeling of Grade in Ore Bodies: A Case Study. Nat Resour Res 26, 223–236 (2017). https://doi.org/10.1007/s11053-016-9314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-016-9314-3

Keywords

Navigation