Natural Resources Research

, Volume 25, Issue 4, pp 417–429 | Cite as

An AHP–TOPSIS Predictive Model for District-Scale Mapping of Porphyry Cu–Au Potential: A Case Study from Salafchegan Area (Central Iran)

  • Hooshang H. Asadi
  • Atefeh Sansoleimani
  • Moslem Fatehi
  • Emmanuel John M. Carranza


The Salafchegan area in central Iran is a greenfield region of high porphyry Cu–Au potential, for which a sound prospectivity model is required to guide mineral exploration. Satellite imagery, geological geochemical, geophysical, and mineral occurrence datasets of the area were used to run an innovative integration model for porphyry Cu–Au exploration. Five favorable multi-class evidence maps, representing diagnostic porphyry Cu–Au recognition criteria (intermediate igneous intrusive and sub-volcanic host rocks, structural controls, hydrothermal alterations, stream sediment Cu anomalies, magnetic signatures), were combined using analytic hierarchy process and technique for order preference by similarity to ideal solution to calculate a final map of porphyry Cu–Au potential in the Salafchegan area.


Porphyry Cu–Au AHP–TOPSIS Data integration Central of Iran 


  1. Abedi, M., & Norouzi, G. H. (2012). Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. Journal of Applied Geophysics, 83, 35–45.CrossRefGoogle Scholar
  2. Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012a). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.CrossRefGoogle Scholar
  3. Abedi, M., Norouzi, G. H., & Fathianpour, N. (2013). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556–567.CrossRefGoogle Scholar
  4. Abedi, M., Norouzi, G. H., & Torabi, S. A. (2012b). Clustering of mineral prospectivity area as an unsupervised classification approach to explore Copper Deposit. Arabian Journal of Geosciences, 6, 3601–3613.CrossRefGoogle Scholar
  5. Abedi, M., Torabi, S. A., Norouzi, G. H., & Hamzeh, M. (2012c). ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping. Journal of Applied Geophysics, 87, 9–18.CrossRefGoogle Scholar
  6. Abedi, M., Torabi, S. A., Norouzi, G. H., Hamzeh, M., & Elyasi, G. R. (2012d). PROMETHEE II: A knowledge-driven method for copper exploration. Computers & Geosciences, 46, 255–263.CrossRefGoogle Scholar
  7. Abrams, M. J., Brown, D., Lepley, L., & Sadowski, R. (1983). Remote sensing for porphyry copper deposits in southern Arizona. Economic Geology, 78, 591–604.CrossRefGoogle Scholar
  8. Aghanabati, A. (2004). Geology of Iran. Geological Survey of Iran: Ministry of industry and mines. 582 p.Google Scholar
  9. Agterberg, F. P. (1995). Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Reviews, 37, 1–8.CrossRefGoogle Scholar
  10. Amos, B. J., & Greenbaum, D. (1989). Alteration detection using TM imagery: The effects of supergene weathering in arid climate. International Journal of Remote Sensing, 10, 515–527.CrossRefGoogle Scholar
  11. An, P., Moon, W. M., & Rencz, A. (1991). Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics, 27, 1–11.Google Scholar
  12. Asadi, H.H. (2008). Final exploration report of Dalli porphyry Cu–Au deposit, Markazi province. Technical report. Dorsa Pardazeh Company.Google Scholar
  13. Asadi, H. H., & Hale, M. (2001). A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran. Computers & Geosciences, 27, 901–912.CrossRefGoogle Scholar
  14. Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., & Lu, Y. J. (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran. Ore Geology Reviews, 71, 819–838.CrossRefGoogle Scholar
  15. Ayati, F., Yavuz, F., Asadi, H. H., Richards, J. P., & Jourdan, F. (2013). Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. International Geology Reviews, 55, 158–184.CrossRefGoogle Scholar
  16. Ayati, F., Yavuz, F., Noghreyan, M., Asadi, H. H., & Yavuz, R. (2008). Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrology, 94, 107–122.CrossRefGoogle Scholar
  17. Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS (p. 398). Oxford: Pergamon Press.Google Scholar
  18. Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights-of-evidence modelling: A new approach to mapping mineral potential. In F. P. Agterberg & G. F. Bonham-Carter (Eds.), Statistical applications in the earth sciences (pp. 171–183). Ottawa: Geological Survey of Canada.Google Scholar
  19. Carranza, E. J. M. (2009). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry 11. New York: Elsevier.Google Scholar
  20. Carranza, E. J. M. (2011). Geocomputation of mineral exploration targets. Computers & Geosciences, 37, 1907–1916.CrossRefGoogle Scholar
  21. Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558.CrossRefGoogle Scholar
  22. Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.CrossRefGoogle Scholar
  23. Carranza, E. J. M., & Laborte, A. G. (2015b). Data-driven predictive modeling of mineral prospectivity using Random Forests: A case study in Catanduanes Island (Philippines). Natural Resources Research. doi: 10.1007/s11053-015-9268-x.Google Scholar
  24. Carranza, E. J. M., & Laborte, A. G. (2015c). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.CrossRefGoogle Scholar
  25. Carranza, E. J. M., Mangaoang, J. C., & Hale, M. (1999). Application of mineral deposit models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research, 8, 165–173.CrossRefGoogle Scholar
  26. Cheng, Q. (1999). Spatial and scaling modeling for geochemical anomaly separation. Journal of Geochemical Exploration, 65, 175–194.CrossRefGoogle Scholar
  27. Clark, D. A. (2014). Magnetic effects of hydrothermal alteration in porphyry copper and iron-oxide copper–gold systems: A review. Tectonophysics, 624–625, 46–65.CrossRefGoogle Scholar
  28. Feizi, F., & Mansuri, E. (2013). Separation of alteration zones on ASTER data and integration with drainage geochemical maps in Soltanieh, Northern Iran. Open Journal of Geology, 3, 134–142.CrossRefGoogle Scholar
  29. Ford, A., Miller, J.  M., & Mol, A. G. (2015). A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation. Natural Resources Research. doi: 10.1007/s11053-015-9263-2.Google Scholar
  30. Gabr, S., Ghulam, A., & Kusky, T. (2010). Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews, 38, 59–69.CrossRefGoogle Scholar
  31. Galvao, L. S., Filho, R. A., & Vitorello, I. (2005). Spectral discrimination of hydrothermally altered materials using ASTER short-wave infrared bands: Evaluation in a tropical savannah environment. International Journal of Applied Earth Observation and Geoinformation, 7, 107–114.CrossRefGoogle Scholar
  32. Geranian, H., Tabatabaei, S. H., Asadi, H. H., & Carranza, E. J. M. (2015). Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit, NW Iran. Natural Resources Research. doi: 10.1007/s11053-015-9271-2.Google Scholar
  33. Halter, W. E., Bain, N., Becker, K., Heinrich, C. A., Landtwing, M., VonQuadt, A., et al. (2004). From andesitic volcanism to the formation of a porphyry Cu–Au mineralizing magma chamber: The Farallo’n Negro Volcanic Complex, northwestern Argentina. Journal of Volcanology and Geothermal Research, 136, 1–30.CrossRefGoogle Scholar
  34. Holden, E. J., Fu, S. C., Kovesi, P., Dentith, M., Bourne, B., & Hope, M. (2011). Automatic identification of responses from porphyry intrusive systems within magnetic data using image analysis. Journal of Applied Geophysics, 74, 255–262.CrossRefGoogle Scholar
  35. Honarmand, M., Ranjbar, H., & Shahabpour, J. (2012). Application of principal component analysis and spectral angle mapper in the mapping of hydrothermal alteration in the Jebal-Barez Area, Southeastern Iran. Resource Geology, 62, 119–139.CrossRefGoogle Scholar
  36. Hosseinali, F., & Alesheikh, A. A. (2008). Weighting spatial information in GIS for copper mining exploration. American Journal of Applied Sciences, 5(9), 1187–1198.CrossRefGoogle Scholar
  37. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. New York: Springer.CrossRefGoogle Scholar
  38. Jahanshahloo, G. R., Hosseinzadeh Lotfi, F., & Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 175, 1375–1384.CrossRefGoogle Scholar
  39. John, D. A., Ayuso, R. A., Barton, M. D., Blakely, R. J., Bodnar, R. J., Dilles, J. H., Gray, F., Graybeal, F. T., Mars, J. C., McPhee, D. K., Seal, R. R., Taylor, R. D., & Vikre, P. G. (2010). Porphyry copper deposit model, chapter B of mineral deposit models for resource assessment. U.S. Geological Survey Scientific Investigations Report 2010–5070–B.Google Scholar
  40. Kruse, F. A., Boardman, J. W., Lefkoff, A. B., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of the Environment, 44, 145–163.CrossRefGoogle Scholar
  41. Lai, Y. J., Liu, T. Y., & Hwang, C. L. (1994). TOPSIS for MODM. European Journal of Operational Research, 76, 486–500.CrossRefGoogle Scholar
  42. Liang, G. S. (1999). Fuzzy MCDM based on ideal and anti-ideal concepts. European Journal of Operational Research, 112, 682–691.CrossRefGoogle Scholar
  43. McKay, G., & Harris, J. R. (2015). Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research. doi: 10.1007/s11053-015-9274-z.Google Scholar
  44. Miller, H. G., & Singh, V. (1994). Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.CrossRefGoogle Scholar
  45. Olson, D. L. (2004). Comparison of weights in TOPSIS models. Mathematical and Computer Modelling, 40(7–8), 721–727.CrossRefGoogle Scholar
  46. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.CrossRefGoogle Scholar
  47. Pan, G. C., & Harris, D. P. (2000). Information synthesis for mineral exploration. New York: Oxford University Press.Google Scholar
  48. Pazand, K., & Hezarkhani, A. (2015). Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: A case study in Siahrud area (NW, Iran). Earth Science Informatics, 8, 207–220.CrossRefGoogle Scholar
  49. Pazand, K., Hezarkhani, A., & Ataei, M. (2012). Using TOPSIS approaches for predictive porphyry Cu potential mapping: A case study in Ahar-Arasbaran area (NW, Iran). Computers & Geosciences, 49, 62–71.CrossRefGoogle Scholar
  50. Pazand, K., Hezarkhani, A., Ataei, M., & Ghanbari, Y. (2011). Combining AHP with GIS for predictive Cu porphyry potential mapping: A case study in Ahar area (NW, Iran). Natural Resources Research, 20, 251–262.CrossRefGoogle Scholar
  51. Porwal, A., Carranza, E. J. M., & Hale, M. (2003a). Knowledge driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12, 1–25.CrossRefGoogle Scholar
  52. Porwal, A., Carranza, E. J. M., & Hale, M. (2003b). Artificial neural networks for mineral–potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12, 156–171.Google Scholar
  53. Porwal, A., Carranza, E. J. M., & Hale, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36, 803–826.CrossRefGoogle Scholar
  54. Pour, A. B., & Hashim, M. (2012). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt. Iran. Advances in Space Research, 49, 753–769.CrossRefGoogle Scholar
  55. Pour, B. A., Hashim, M., & Marghany, M. (2011). Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. International Journal of the Physical Sciences, 6, 917–929.Google Scholar
  56. Pournamdari, M., Hashim, M., & Beiranvand Pour, M. (2014). Application of ASTER and Landsat TM Data for geological mapping of esfandagheh ophiolite complex, Southern Iran. Resource Geology, 64, 233–246.CrossRefGoogle Scholar
  57. Richards, J. P., & Mumin, A. (2013). Magmatic-hydrothermal processes within an evolving Earth: Iron oxide–copper–gold and porphyry Cu ± Mo ± Au deposits. Geology, 41, 767–770.CrossRefGoogle Scholar
  58. Rowan, L. C., Mars, J. C., & Simpson, C. J. (2005). Lithologic mapping of the Mordor N.T., Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of the Environment, 99, 105–126.CrossRefGoogle Scholar
  59. Saaty, T. L. (1977). A scaling method for priorities in hierarchical. Journal of Mathematical Psychology, 15, 234–281.CrossRefGoogle Scholar
  60. Saaty, T. L. (1980). The analytic hierarchy process, planning, priority setting, resource allocation. New York: McGraw-Hill.Google Scholar
  61. Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process. Pittsburg: RWS Publication.Google Scholar
  62. Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.CrossRefGoogle Scholar
  63. Salem, A., Williams, S., Fairhead, J. D., & Ravat, D. (2007). Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 26, 1502–1505.CrossRefGoogle Scholar
  64. Shahriari, H., Ranjbar, H., & Honarmand, M. (2013). Image segmentation for hydrothermal alteration mapping using PCA and concentration-area fractal model. Natural Resources Research, 22, 191–206.CrossRefGoogle Scholar
  65. Shahriari, H., Ranjbar, H., Honarmand, M., & Carranza, E. J. M. (2014). Selection of less biased threshold angles for SAM classification using the real value–area fractal technique. Resource Geology, 64, 301–315.CrossRefGoogle Scholar
  66. Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105, 3–41.CrossRefGoogle Scholar
  67. Singer, D. A., Berger, V. I., & Moring, B. C. (2005). Porphyry copper deposits of the world: database, map, grade and tonnage models. U.S. Geological Survey Open-File Report 2005–1060,
  68. Singer, D. A., Berger, V. I., & Moring, B. C. (2008). Porphyry copper deposits of the world—database and grade and tonnage models, 2008. U.S. Geological Survey Open-File Report 2008–1155,
  69. Thoman, M. W., Zonge, K. L., & Liu, D. (2000). Geophysical case history of North Silver Bell, Pima County, Arizona—a supergene-enriched porphyry copper deposit. In R. B. Ellis, R. Irvine, & F. Fritz (Eds.), Northwest Mining Association 1998 Practical Geophysics Short Course Selected Papers on CD-ROM: Spokane. Washington: Northwest Mining Association.Google Scholar
  70. Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: Methods and applications. New York: CRC Press.Google Scholar
  71. Verduzco, B., Fairhead, J. D., Green, C. M., & MacKenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–119.CrossRefGoogle Scholar
  72. Yoon, K., & Hwang, C. L. (1995). Multiple attribute decision making: An introduction. Thousand Oaks: Sage.CrossRefGoogle Scholar
  73. Yousefi, M., & Carranza, E. J. M. (2015). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research. doi: 10.1007/s11053-014-9261-9.Google Scholar
  74. Zeleny, M. (1982). Multiple criteria decision making. New York: McGraw-Hill.Google Scholar
  75. Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2016

Authors and Affiliations

  • Hooshang H. Asadi
    • 1
    • 2
  • Atefeh Sansoleimani
    • 3
  • Moslem Fatehi
    • 1
  • Emmanuel John M. Carranza
    • 4
    • 5
  1. 1.Department of Mining EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Centre for Exploration Targeting, Australian Research Council Centre of Excellence for Core to Crust Fluid Systems, School of Earth and EnvironmentThe University of Western AustraliaCrawleyAustralia
  3. 3.School of Earth SciencesThe University of QueenslandBrisbaneAustralia
  4. 4.Economic Geology Research Centre, College of Science, Technology and EngineeringJames Cook UniversityTownsvilleAustralia
  5. 5.Institute of GeosciencesState University of CampinasCampinasBrazil

Personalised recommendations