Skip to main content
Log in

Space Deformation Non-stationary Geostatistical Approach for Prediction of Geological Objects: Case Study at El Teniente Mine (Chile)

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This article addresses the problem of the prediction of the breccia pipe elevation named Braden at the El Teniente mine in Chile. This mine is one of the world’s largest known porphyry-copper ore bodies. Knowing the exact location of the pipe surface is important, as it constitutes the internal limit of the deposit. The problem is tackled by applying a non-stationary geostatistical method based on space deformation, which involves transforming the study domain into a new domain where a standard stationary geostatistical approach is more appropriate. Data from the study domain is mapped into the deformed domain, and classical stationary geostatistical techniques for prediction can then be applied. The predicted results are then mapped back into the original domain. According to the results, this non-stationary geostatistical method outperforms the conventional stationary one in terms of prediction accuracy and conveys a more informative uncertainty model of the predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Almendral, A., Abrahamsen, P., & Hauge, R. (2008). Multidimensional scaling and anisotropic covariance functions. In: Proceedings of the eight international geostatistics congress (pp. 187–196).

  • Anderes, E. B., & Chatterjee, S. (2009). Consistent estimates of deformed isotropic gaussian random fields on the plane. Annals of Statistics, 37(5), 2324–2350.

    Article  Google Scholar 

  • Anderes, E. B., & Stein, M. L. (2008). Estimating deformations of isotropic gaussian random fields on the plane. Annals of Statistics, 36, 719–741.

    Article  Google Scholar 

  • Boisvert, J. B., & Deutsch, C. V. (2011). Programs for kriging and sequential gaussian simulation with locally varying anisotropy using non-euclidean distances. Computers & Geosciences, 37(4), 495–510.

    Article  Google Scholar 

  • Borg, I., & Groenen, P. (2005). Modern multidimensional scaling: Theory and applications. Springer Series in Statistics. Berlin: Springer.

    Google Scholar 

  • Bornn, L., Shaddick, G., & Zidek, J. V. (2012). Modeling nonstationary processes through dimension expansion. Journal of the American Statistical Association, 107(497), 281–289.

    Article  Google Scholar 

  • Castro Morales, F., Gamerman, D., & Paez, M. (2013). State space models with spatial deformation. Environmental and Ecological Statistics, 20(2), 191–214.

    Article  Google Scholar 

  • Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty. New York: Wiley.

    Book  Google Scholar 

  • Cox, T., & Cox, A. (2000). Multidimensional scaling, (2nd ed.). New York: Taylor & Francis.

    Google Scholar 

  • Damian, D., Sampson, P. D., & Guttorp, P. (2001). Bayesian estimation of semi-parametric non-stationary spatial covariance structures. Environmetrics, 12(2), 161–178.

    Article  Google Scholar 

  • Desassis, N., & Renard, D. (2012). Automatic variogram modeling by iterative least squares: Univariate and multivariate cases. Mathematical Geosciences, 45(4), 453–470.

    Article  Google Scholar 

  • Dryden, I. L., & Mardia, K. (1998). Statistical shape analysis. New York: Wiley.

    Google Scholar 

  • Fouedjio, F., Desassis, N., & Romary, T. (2015). Estimation of space deformation model for non-stationary random functions. Spatial Statistics, 13, 45–61.

    Article  Google Scholar 

  • Genton, M. G., & Perrin, O. (2004). On a time deformation reducing nonstationary stochastic processes to local stationarity. Journal of Applied Probability, 41(1), 236–249.

    Article  Google Scholar 

  • Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378.

    Article  Google Scholar 

  • Iovleff, S., & Perrin, O. (2004). Estimating a nonstationary spatial structure using simulated annealing. Journal of Computational and Graphical Statistics, 13(1), 90–105.

    Article  Google Scholar 

  • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.

    Article  Google Scholar 

  • Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29(2), 115–129.

    Article  Google Scholar 

  • Lloyd, C. (2010). Local models for spatial analysis (2nd ed.). New York: CRC Press.

    Book  Google Scholar 

  • Maksaev, V., Munizaga, F., McWilliams, M., Fanning, M., Mathur, R., Ruiz, J., et al. (2004). New chronology for El Teniente, Chilean Andes, from u-pb, 40ar/39ar, re-os, and fission-track dating: Implications for the evolution of a supergiant porphyry cu-mo deposit. Society of Economic Geologists Special Publication, 11, 15–54.

    Google Scholar 

  • Mardia, K., & Goodall, C. (1993). Spatial-temporal analysis of multivariate environmental monitoring data. In G. P. Patil, & C. R. Rao (Eds.), Multivariate environmental statistics (vol. 16, pp. 347–386). North Holland: Elsevier Science Publishers, Ch.

    Google Scholar 

  • McBratney, A. B., & Minasny, B. (2013). Spacebender. Spatial Statistics, 4, 57–67.

    Article  Google Scholar 

  • Meiring, W., Monestiez, P., Sampson, P. D., & Guttorp, P. (1997). Developments in the modelling of nonstationary spatial covariance structure from space-time monitoring data. In E. Y. Baafi, & N. A. Schofield (Eds.), geoENV II—Geostatistics for environmental applications. Quantitative geology and geostatistics (vol. 1, pp. 162–173). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Perrin, O., & Meiring, W. (1999). Identifiability for non-stationary spatial structure. Journal of Applied Probability, 36(4), 1244–1250.

    Article  Google Scholar 

  • Perrin, O., & Meiring, W. (2003). Nonstationarity in r-n is second-order stationarity in r-2n. Journal of Applied Probability, 40(3), 815–820.

    Article  Google Scholar 

  • Perrin, O., & Monestiez, P. (1998). Modeling of non-stationary spatial covariance structure by parametric radial basis deformations. In J. Gómez-Hernández, A. Soares, & R. Froidevaux (Eds.), geoENV II—Geostatistics for environmental applications. Quantitative geology and geostatistics (Vol. 11, pp. 175–186). Netherlands: Springer.

    Google Scholar 

  • Perrin, O., & Senoussi, R. (2000). Reducing non-stationary random fields to stationarity and isotropy using a space deformation. Statistics & Probability Letters, 48(1), 23–32.

    Article  Google Scholar 

  • Porcu, E., Matkowski, J., & Mateu, J. (2010). On the non-reducibility of non-stationary correlation functions to stationary ones under a class of mean-operator transformations. Stochastic Environmental Research and Risk Assessment, 24(5), 599–610.

    Article  Google Scholar 

  • Sampson, P. D., & Guttorp, P. (1992). Nonparametric-estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association, 87(417), 108–119.

    Article  Google Scholar 

  • Schmidt, A. M., Guttorp, P., & O’Hagan, A. (2011). Considering covariates in the covariance structure of spatial processes. Environmetrics, 22(4), 487–500.

    Article  Google Scholar 

  • Schmidt, A. M., & O’Hagan, A. (2003). Bayesian inference for non-stationary spatial covariance structure via spatial deformations. Journal of the Royal Statistical Society Series B-Statistical Methodology, 65, 743–758.

    Article  Google Scholar 

  • Skewes, M. A., Arévalo, A., Floody, R., Zuñiga, P. H., & Stern, C. R. (2002). The giant El Teniente breccia deposit: Hypogene copper distribution and emplacement. Soc. Econ. Geol. Spec. Publ., 9, 299–332.

    Google Scholar 

  • Smith, R. L. (1996). Estimating nonstationary spatial correlations. Technical report, University of North Carolina.

  • Spencer, E. T., Wilkinson, J. J., Creaser, R. A., & Seguel, J. (2015). The distribution and timing of molybdenite mineralization at the El Teniente cu-mo porphyry deposit, Chile. Economic Geology, 110(2), 387–421.

    Article  Google Scholar 

  • Vera, J., Macias, R., & Angulo, J. (2008). Non-stationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints. Stochastic Environmental Research and Risk Assessment, 22(1), 95–106.

    Article  Google Scholar 

  • Vera, J. F., Macias, R., & Angulo, J. M. (2009). A latent class mds model with spatial constraints for non-stationary spatial covariance estimation. Stochastic Environmental Research and Risk Assessment, 23(6), 769–779.

    Article  Google Scholar 

  • Wand, M., & Jones, C. (1995). Kernel smoothing. Monographs on statistics and applied probability. London: Chapman and Hall.

    Book  Google Scholar 

  • Zhang, H., & Wang, Y. (2010). Kriging and cross-validation for massive spatial data. Environmetrics, 21(3–4), 290–304.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the company CODELCO-Chile for providing the data used in this paper. We acknowledge the editor-in-chief of NARR for expert handling of our manuscript, and we thank the anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francky Fouedjio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouedjio, F. Space Deformation Non-stationary Geostatistical Approach for Prediction of Geological Objects: Case Study at El Teniente Mine (Chile). Nat Resour Res 25, 283–296 (2016). https://doi.org/10.1007/s11053-015-9287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-015-9287-7

Keywords

Navigation