Natural Resources Research

, Volume 25, Issue 3, pp 283–296 | Cite as

Space Deformation Non-stationary Geostatistical Approach for Prediction of Geological Objects: Case Study at El Teniente Mine (Chile)

  • Francky Fouedjio


This article addresses the problem of the prediction of the breccia pipe elevation named Braden at the El Teniente mine in Chile. This mine is one of the world’s largest known porphyry-copper ore bodies. Knowing the exact location of the pipe surface is important, as it constitutes the internal limit of the deposit. The problem is tackled by applying a non-stationary geostatistical method based on space deformation, which involves transforming the study domain into a new domain where a standard stationary geostatistical approach is more appropriate. Data from the study domain is mapped into the deformed domain, and classical stationary geostatistical techniques for prediction can then be applied. The predicted results are then mapped back into the original domain. According to the results, this non-stationary geostatistical method outperforms the conventional stationary one in terms of prediction accuracy and conveys a more informative uncertainty model of the predictions.


Mining Geostatistics Non-stationarity Space deformation Variogram Kriging 



We would like to thank the company CODELCO-Chile for providing the data used in this paper. We acknowledge the editor-in-chief of NARR for expert handling of our manuscript, and we thank the anonymous referees for their constructive comments.


  1. Almendral, A., Abrahamsen, P., & Hauge, R. (2008). Multidimensional scaling and anisotropic covariance functions. In: Proceedings of the eight international geostatistics congress (pp. 187–196).Google Scholar
  2. Anderes, E. B., & Chatterjee, S. (2009). Consistent estimates of deformed isotropic gaussian random fields on the plane. Annals of Statistics, 37(5), 2324–2350.CrossRefGoogle Scholar
  3. Anderes, E. B., & Stein, M. L. (2008). Estimating deformations of isotropic gaussian random fields on the plane. Annals of Statistics, 36, 719–741.CrossRefGoogle Scholar
  4. Boisvert, J. B., & Deutsch, C. V. (2011). Programs for kriging and sequential gaussian simulation with locally varying anisotropy using non-euclidean distances. Computers & Geosciences, 37(4), 495–510.CrossRefGoogle Scholar
  5. Borg, I., & Groenen, P. (2005). Modern multidimensional scaling: Theory and applications. Springer Series in Statistics. Berlin: Springer.Google Scholar
  6. Bornn, L., Shaddick, G., & Zidek, J. V. (2012). Modeling nonstationary processes through dimension expansion. Journal of the American Statistical Association, 107(497), 281–289.CrossRefGoogle Scholar
  7. Castro Morales, F., Gamerman, D., & Paez, M. (2013). State space models with spatial deformation. Environmental and Ecological Statistics, 20(2), 191–214.CrossRefGoogle Scholar
  8. Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty. New York: Wiley.CrossRefGoogle Scholar
  9. Cox, T., & Cox, A. (2000). Multidimensional scaling, (2nd ed.). New York: Taylor & Francis.Google Scholar
  10. Damian, D., Sampson, P. D., & Guttorp, P. (2001). Bayesian estimation of semi-parametric non-stationary spatial covariance structures. Environmetrics, 12(2), 161–178.CrossRefGoogle Scholar
  11. Desassis, N., & Renard, D. (2012). Automatic variogram modeling by iterative least squares: Univariate and multivariate cases. Mathematical Geosciences, 45(4), 453–470.CrossRefGoogle Scholar
  12. Dryden, I. L., & Mardia, K. (1998). Statistical shape analysis. New York: Wiley.Google Scholar
  13. Fouedjio, F., Desassis, N., & Romary, T. (2015). Estimation of space deformation model for non-stationary random functions. Spatial Statistics, 13, 45–61.CrossRefGoogle Scholar
  14. Genton, M. G., & Perrin, O. (2004). On a time deformation reducing nonstationary stochastic processes to local stationarity. Journal of Applied Probability, 41(1), 236–249.CrossRefGoogle Scholar
  15. Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378.CrossRefGoogle Scholar
  16. Iovleff, S., & Perrin, O. (2004). Estimating a nonstationary spatial structure using simulated annealing. Journal of Computational and Graphical Statistics, 13(1), 90–105.CrossRefGoogle Scholar
  17. Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.CrossRefGoogle Scholar
  18. Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29(2), 115–129.CrossRefGoogle Scholar
  19. Lloyd, C. (2010). Local models for spatial analysis (2nd ed.). New York: CRC Press.CrossRefGoogle Scholar
  20. Maksaev, V., Munizaga, F., McWilliams, M., Fanning, M., Mathur, R., Ruiz, J., et al. (2004). New chronology for El Teniente, Chilean Andes, from u-pb, 40ar/39ar, re-os, and fission-track dating: Implications for the evolution of a supergiant porphyry cu-mo deposit. Society of Economic Geologists Special Publication, 11, 15–54.Google Scholar
  21. Mardia, K., & Goodall, C. (1993). Spatial-temporal analysis of multivariate environmental monitoring data. In G. P. Patil, & C. R. Rao (Eds.), Multivariate environmental statistics (vol. 16, pp. 347–386). North Holland: Elsevier Science Publishers, Ch.Google Scholar
  22. McBratney, A. B., & Minasny, B. (2013). Spacebender. Spatial Statistics, 4, 57–67.CrossRefGoogle Scholar
  23. Meiring, W., Monestiez, P., Sampson, P. D., & Guttorp, P. (1997). Developments in the modelling of nonstationary spatial covariance structure from space-time monitoring data. In E. Y. Baafi, & N. A. Schofield (Eds.), geoENV II—Geostatistics for environmental applications. Quantitative geology and geostatistics (vol. 1, pp. 162–173). Dordrecht: Kluwer Academic Publisher.Google Scholar
  24. Perrin, O., & Meiring, W. (1999). Identifiability for non-stationary spatial structure. Journal of Applied Probability, 36(4), 1244–1250.CrossRefGoogle Scholar
  25. Perrin, O., & Meiring, W. (2003). Nonstationarity in r-n is second-order stationarity in r-2n. Journal of Applied Probability, 40(3), 815–820.CrossRefGoogle Scholar
  26. Perrin, O., & Monestiez, P. (1998). Modeling of non-stationary spatial covariance structure by parametric radial basis deformations. In J. Gómez-Hernández, A. Soares, & R. Froidevaux (Eds.), geoENV II—Geostatistics for environmental applications. Quantitative geology and geostatistics (Vol. 11, pp. 175–186). Netherlands: Springer.Google Scholar
  27. Perrin, O., & Senoussi, R. (2000). Reducing non-stationary random fields to stationarity and isotropy using a space deformation. Statistics & Probability Letters, 48(1), 23–32.CrossRefGoogle Scholar
  28. Porcu, E., Matkowski, J., & Mateu, J. (2010). On the non-reducibility of non-stationary correlation functions to stationary ones under a class of mean-operator transformations. Stochastic Environmental Research and Risk Assessment, 24(5), 599–610.CrossRefGoogle Scholar
  29. Sampson, P. D., & Guttorp, P. (1992). Nonparametric-estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association, 87(417), 108–119.CrossRefGoogle Scholar
  30. Schmidt, A. M., Guttorp, P., & O’Hagan, A. (2011). Considering covariates in the covariance structure of spatial processes. Environmetrics, 22(4), 487–500.CrossRefGoogle Scholar
  31. Schmidt, A. M., & O’Hagan, A. (2003). Bayesian inference for non-stationary spatial covariance structure via spatial deformations. Journal of the Royal Statistical Society Series B-Statistical Methodology, 65, 743–758.CrossRefGoogle Scholar
  32. Skewes, M. A., Arévalo, A., Floody, R., Zuñiga, P. H., & Stern, C. R. (2002). The giant El Teniente breccia deposit: Hypogene copper distribution and emplacement. Soc. Econ. Geol. Spec. Publ., 9, 299–332.Google Scholar
  33. Smith, R. L. (1996). Estimating nonstationary spatial correlations. Technical report, University of North Carolina.Google Scholar
  34. Spencer, E. T., Wilkinson, J. J., Creaser, R. A., & Seguel, J. (2015). The distribution and timing of molybdenite mineralization at the El Teniente cu-mo porphyry deposit, Chile. Economic Geology, 110(2), 387–421.CrossRefGoogle Scholar
  35. Vera, J., Macias, R., & Angulo, J. (2008). Non-stationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints. Stochastic Environmental Research and Risk Assessment, 22(1), 95–106.CrossRefGoogle Scholar
  36. Vera, J. F., Macias, R., & Angulo, J. M. (2009). A latent class mds model with spatial constraints for non-stationary spatial covariance estimation. Stochastic Environmental Research and Risk Assessment, 23(6), 769–779.CrossRefGoogle Scholar
  37. Wand, M., & Jones, C. (1995). Kernel smoothing. Monographs on statistics and applied probability. London: Chapman and Hall.CrossRefGoogle Scholar
  38. Zhang, H., & Wang, Y. (2010). Kriging and cross-validation for massive spatial data. Environmetrics, 21(3–4), 290–304.Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2015

Authors and Affiliations

  1. 1.CSIRO Mineral Resources FlagshipKensingtonAustralia

Personalised recommendations