Skip to main content

Advertisement

Log in

EOR Potential from CO2 Captured from Coal-Fired Power Plants in the Upper Cretaceous (Cenomanian) Woodbine Group, East Texas Basin, and Southeastern Texas Gulf Coast, USA

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The East Texas Basin and southeastern Texas Gulf Coast contain a variety of co-located CO2 sources and sinks that may facilitate development of new clean-coal facilities. These facilities can be linked to mature oil fields with potential for enhanced oil recovery (EOR) from miscible CO2 floods. Twenty-three reservoirs in the East Texas Basin and southeastern Texas Gulf Coast, assuming a 15% recovery factor of original oil in place (OOIP), have a CO2-EOR potential for recovery of ~9,697,000 m3 [~62.2 million stock tank barrels] of oil. A network of new CO2 pipelines can link these fields to existing power plants near lignite mine mouths in east and southeast Texas. Representative oil fields in the Woodbine Group illustrate fluvial and deltaic facies variability and different sandstone-body architectures with varying controls on potential CO2 capacity. Reservoir heterogeneity, fluid flow, hydrocarbon production, and potential CO2 capacity in the Woodbine Group in the structurally simple East Texas field are mainly a function of facies architecture. The Woodbine Group in East Texas field contains a lower section of narrow and lenticular sandstone bodies in a fluvially dominated deltaic system. Pressure and production data indicate that additional oil recovery in the lower Woodbine deltaic section in East Texas field is low in muddy, low-permeability prodelta, and distal-delta-front facies. In contrast, oil recovery is greater in sandy distributary-channel sandstones. Core-plug data show that distributary-channel and channel-mouth-bar sandstones in the field have high median-permeability values, and therefore a greater potential for CO2 capacity. These deltaic deposits are overlain disconformably by an upper section of continuous, coarse-grained fluvial deposits that favor high CO2 capacity owing to Darcy-class permeability and extensive vertical and lateral reservoir continuity. In contrast, Woodbine fields in southeast Texas represent distal-deltaic facies. CO2 capacity and EOR potential in these fields are limited by thin distributary-channel and crevasse-splay deposits that contain abundant mudstone beds that may serve to segregate-injected CO2 into small reservoir compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Adams, R. L., & Carr, J. P. (2010). Regional depositional systems of the Woodbine Eagle Ford, and Tuscaloosa of the US Gulf Coast. Gulf Coast Association of Geological Societies Transactions, 60, 3–27.

    Google Scholar 

  • ARI. (2006). Basin oriented strategies for CO2 enhanced oil recovery: east and central Texas. Report prepared by Advanced Resources International (ARI) for the U.S. Department of Energy, Office of Fossil Energy–Office of Oil and Natural Gas.

  • Al-Juaied, M., & Whitmore, A. (2009). Realistic costs of carbon capture. Discussion Paper 2009-08. Belfer Center for Science and International Affairs, Energy Technology Innovation Research Group, Harvard Kennedy School.

  • Ambrose, W. A., Breton, C., Hovorka, S. D., Duncan, I. J., Gülen, G., Holtz, M. H., et al. (2011). Geologic and infrastructure factors for delineating areas for clean coal: Examples in Texas, USA. Environmental Earth Science, 63, 513–532.

    Article  Google Scholar 

  • Ambrose, W. A., Breton, C., Núñez López, V., & Gülen, G. (2012). Geologic and economic criteria for siting clean-coal facilities in the Texas Gulf Coast, USA. Natural Resources Research, 21, 461–482.

    Article  Google Scholar 

  • Ambrose, W. A., & Hentz, T. F. (2010). Depositional systems and facies variability in highstand fluvial-dominated deltaic and lowstand valley-fill systems in the Lower Cretaceous (Cenomanian) Woodbine Group, East Texas field. In T. F. Hentz (Ed.), Sequence stratigraphy, depositional facies, and reservoir attributes of the Upper Cretaceous Woodbine Group, East Texas field (Vol. 274, pp. 17–81). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Ambrose, W. A., & Hentz, T. F. (2012). Shelf-edge deltaic depositional systems in the upper Woodbine succession, Double A Wells field, Polk County, Texas. Gulf Coast Association of Geological Societies Transactions, 62, 3–12.

    Google Scholar 

  • Ambrose, W. A., Hentz, T. F., Bonnaffé, F., Loucks, R. G., Brown, L. F., Jr, & Wang, F. P. (2009). Sequence stratigraphic controls on complex reservoir architecture of highstand fluvial-dominated deltaic and lowstand valley-fill deposits in the Woodbine Group, East Texas field: Regional and local perspectives. American Association of Petroleum Geologists Bulletin, 93(2), 231–269.

    Article  Google Scholar 

  • Ambrose, W. A., Holtz, M. H., Núñez López, V., Breton, C. L., Gülen, G., Duncan, I., et al. (2006). FutureGen: Clean-coal and near-zero-emission power generation technology for the Gulf Coast. Gulf Coast Association of Geological Societies Transactions, 56, 5–13.

    Google Scholar 

  • Ambrose, W. A., Lakshminarasimhan, S., Holtz, M. H., Núñez López, V., Hovorka, S. D., & Duncan, I. J. (2008). Geologic factors controlling CO2 storage capacity and permanence: Case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage. Environmental Geology, 54, 1619–1633.

    Article  Google Scholar 

  • Ayers, W. B., Jr., & Lewis, A. H. (1985). The Wilcox Group and Carrizo sand (Paleogene) in east-central Texas: depositional systems and deep-basin lignite. Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Special Publication.

  • Ayers, W. B, Jr., Lewis, A. H., & Collins, G. F. (1986). Resistivity, lignite and lithofacies mapping of the Wilcox Group, east central Texas. In W. R. Kaiser (Ed.), Geology and groundwater hydrology of deep-basin lignite in the Wilcox Group of East Texas (pp. 31–50). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Special Publication.

  • Barrett, E. T. (1962). Madisonville field. In R. L. Denham (Ed.), Typical oil & gas fields of southeast Texas (pp. 108–110). Houston, TX: Houston Geological Society.

    Google Scholar 

  • Berg, R. R., & Gangi, A. F. (1999). Primary migration by oil-generating microfracturing in low-permeability source rocks: Application to the Austin Chalk, Texas. American Association of Petroleum Geologists Bulletin, 83, 727–756.

    Google Scholar 

  • Bergslien, D., Kyllingstad, G., Solberg, A., Ferguson, I. J., & Pepper, C. F. (2005). Jotun field geology and development strategy. In A. G. Doré & B. A. Vining (Eds.), Petroleum geology: North-west Europe and global perspectives—Proceedings of the 6th petroleum geology conference (pp. 99–110). London: Geological Society of London.

    Chapter  Google Scholar 

  • Bernard, H. A., & Le Blanc, R. J. (1965). Resume of quaternary geology of the northwestern Gulf of Mexico province. In H. E. Wright & D. G. Freg (Eds.), The quaternary of the United States (pp. 137–185). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Bhattacharya, J. P., & Walker, R. G. (1992). Deltas. In R. G. Walker & N. James (Eds.), Facies models: Response to sea level change (pp. 157–177). St. John’s Newfoundland: Geological Association of Canada.

    Google Scholar 

  • Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M., & Lyle, S. (2007). Modelling carbon dioxide accumulation at Sleipner: Implications for underground carbon storage. Earth and Planetary Science Letters, 255, 164–176.

    Article  Google Scholar 

  • Bolås, H. M. N., Hermanrud, C., & Teige, G. M. G. (2005). Seal capacity estimation from subsurface pore pressures. Basin Research, 17, 583–599.

    Article  Google Scholar 

  • Boothroyd, J. C. (1972). Coarse-grained sedimentation on a braided outwash fan, northeast Gulf of Alaska, Vol. 6. Technical Report. University of South Carolina, Coastal Research Division.

  • Brown, L. F., Jr., Cleaves, II, A. W., & Erxleben, A. W. (1973). Pennsylvanian depositional systems in north-central Texas (Vol. 14). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Guidebook.

  • Bryant, S. L., Lakshminarasimhan, S., & Pope, G. A. (2006). Buoyancy dominated multiphase flow and its impact on geological sequestration of CO2. Society of Petroleum Engineers Paper SPE 99938.

  • Bukowski, C. T., Jr. (1984). Depositional environment of Woodbine and Eagleford sandstones at OSR-Halliday field, Leon and Madison Counties, Texas. M.S. Thesis, Texas A&M University.

  • Cartwright, J., Huuse, M., & Aplin, A. (2007). Seal bypass systems. American Association of Petroleum Geologists Bulletin, 91, 1141–1166.

    Article  Google Scholar 

  • Cash, T. C. (1951). Navarro Crossing field. In F. A. Herald (Ed.), Occurrence of oil and gas in northeast Texas (pp. 250–253). Austin, TX: Bureau of Economic Geology, Publication No. 5116.

  • Chadwick, R. A., Zweigel, P., Gregersen, U., Kirby, G. A., Holloway, S., & Johannessen, P. N. (2004). Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy, 29, 1371–1381.

    Article  Google Scholar 

  • Choi, J.-W., Clift, S., Hosseini, S. A., Nicot, J. P., & Hovorka, S. D. (2013). CO2 recycling accounting and storage capacity in a U.S. Gulf Coast Reservoir. International Journal of Greenhouse Gas Control, 18, 474–484.

    Article  Google Scholar 

  • Cohen, A., Fowler, M., & Waltzer, K. (2009). “NowGen”; getting real about coal carbon capture and sequestration. The Electricity Journal, 22(4), 25–42.

    Article  Google Scholar 

  • Coleman, J. M., & Gagliano, S. M. (1964). Cyclic sedimentation in the Mississippi River delta plain. Gulf Coast Association of Geological Societies Transactions, 14, 67–80.

    Google Scholar 

  • Coleman, J. M., & Prior, D. B. (1982). Deltaic environments. In P. A. Scholle & D. R. Spearing (Eds.), Sandstone depositional environments (Vol. 31, pp. 139–178). American Association of Petroleum Geologists, Memoir.

  • Coleman, J. M., & Wright, L. D. (1975). Modern river deltas: variability of processes and sand bodies. In M. L. Broussard (Ed.), Deltas: Models for exploration (pp. 99–149). Houston, TX: Houston Geological Society.

    Google Scholar 

  • Cronquist, C. (1968). Waterflooding by linear displacement in Little Creek field. Mississippi. Journal of Petroleum Technology, 20(5), 525–533.

    Article  Google Scholar 

  • Darbonne, N. (2012). Emerging plays. Retrieved April 4, 2014, from http://www.indigominerals.com/docs/Emerging_Plays.pdf.

  • Dawson, W. C. (2000). Shale microfacies: Eagle Ford Group (Cenomanian-Turonian) north-central Texas outcrops and subsurface equivalents. Gulf Coast Association of Geological Societies Transactions, 50, 607–621.

    Google Scholar 

  • Dawson, W. C., & Almon, W. R. (2002). Top seal potential of Tertiary deep-water Gulf of Mexico shales. Gulf Coast Association of Geological Societies Transactions, 52, 167–176.

    Google Scholar 

  • Denbury Resources. (2008). 2008 Annual Report. Retrieved April 4, 2014, from http://216.139.227.101/interactive/dnr2008/pf/page_031.pdf.

  • Denbury Resources. (2014). Operations—Gulf Coast region CO2 EOR assets. Retrieved March 27, 2014, from http://denbury.q4web.com/operations/co2-eor/gulf-coast-region/default.aspx.

  • Dooley, J. J., Dahowski, R. T., & Davidson, C. L. (2009). Comparing existing pipeline networks with the potential scale of future U.S. CO2 pipeline networks. Energy Procedia, 1, 1595–1602.

    Article  Google Scholar 

  • Doughty, C. A., & Pruess, K. (2004). Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone Journal, 3, 837–847.

    Article  Google Scholar 

  • Doughty, C. A., Pruess, K., Benson, S. M., Hovorka, S. D., & Green, C. T. (2001). Capacity investigation of brine-bearing sands of the Frio Formation for geologic sequestration of CO2. In Proceedings of the 1st national conference on carbon sequestration, May 14–17. National Energy Technology Laboratory, Washington, DC. Retrieved April 4, 2014, from http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/p32.pdf.

  • Dubiel, R. F., Pitman, J. K., & Steinshouer, D. (2003). Seismicsequence stratigraphy and petroleum system modeling of the downdip Tuscaloosa-Woodbine, Louisiana and Texas. Gulf Coast Association of Geological Societies Transactions, 53, 607–621.

    Google Scholar 

  • Dutton, S. P., Flanders, W. A., & Barton, M. D. (2003). Reservoir characterization of a Permian deep-water sandstone. American Association of Petroleum Geologists Bulletin, 87, 609–627.

    Article  Google Scholar 

  • East Texas Engineering Association. (1953). The East Texas oil field, 1930–1950. Kilgore, TX.

  • Eikeland, K. M., & Hansen, H. (2009). Dry gas reinjection in a strong waterdrive gas/condensate field increases condensate recovery—case study: The Sleipner Øst Ty field, South Viking Graben, Norwegian North Sea. Society of Petroleum Engineers, SPE Paper, 110309, 281–296.

    Google Scholar 

  • Eisenstatt, P. (1960). Little Creek field, Lincoln and Pike Counties, Mississippi. Gulf Coast Association of Geological Societies Transactions, 10, 207–213.

    Google Scholar 

  • Electric Reliability Council of Texas. (2008, December). Report on existing and potential electric system constraints and needs. Retrieved April 4, 2014, from http://www.ercot.com/content/news/presentations/2008/2008_Constraints_and_Needs_Report_30DEC2008.pdf.

  • Elliott, T. (1974). Interdistributary bay sequences and their genesis. Sedimentology, 21, 611–622.

    Article  Google Scholar 

  • Essandoh-Yeddu, J., & Gülen, G. (2008). Economic modeling of carbon dioxide integrated pipeline network for enhanced oil recovery and geologic sequestration in the Texas Gulf Coast region. In: 9th international conference on greenhouse gas control technologies (GHGT-9), November 16–20, Washington, DC, GCCC Digital Publication Series #08-03k. Retrieved April 4, 2014, from http://www.beg.utexas.edu/gccc/bookshelf/2008/GHGT9/08-03k-Final.pdf.

  • Eynon, G., & Walker, R. G. (1974). Facies relationships in Pleistocene outwash gravels, Southern Ontario: A model for bar growth in braided rivers. Sedimentology, 21, 43–70.

    Article  Google Scholar 

  • Fisk, H. N. (1961). Bar finger sands of the Mississippi Delta. In J. A. Peterson & J. C. Osmond (Eds.) Geometry of Sandstone Bodiesa symposium, 45th annual meeting (pp. 29–52). Atlantic City, NJ: American Association of Petroleum Geologists Special Publication.

  • Fox, B. W., Carmody, T. G., & Berryhill, R. A. (1965). Developments in east Texas, Arkansas, and north Louisiana in 1964. American Association of Petroleum Geologists Bulletin, 49(6), 749–765.

    Google Scholar 

  • Frazier, D. E. (1967). Recent deltaic deposits of the Mississippi River: Their development and chronology. Gulf Coast Association of Geological Societies Transactions, 17, 287–315.

    Google Scholar 

  • Galloway, W. E. (1975). Process framework for describing the morphological and stratigraphic evolution of deltaic depositional systems. In M. L. Broussard (Ed.), Deltas: models for exploration (pp. 87–98). Houston, TX: Houston Geological Society.

    Google Scholar 

  • Galloway, W. E. (1977). Catahoula formation of the Texas Coastal Plaindepositional systems, composition, structural development, ground-water flow history, and uranium distribution (Vol. 87). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Galloway, W. E., & Cheng, E. S. (1985). Reservoir facies architecture in a microtidal barrier systemFrio formation, Texas Gulf Coast (Vol. 144, 36 pp). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Galloway, W. E., Ewing, T. E., Garrett, C. M., Tyler, N., & Bebout, D. G. (1983). Atlas of major Texas oil reservoirs. Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Special Publication.

  • Galloway, W. E., Ganey-Curry, P. E., Li, X., & Buffler, R. T. (2000). Cenozoic depositional history of the Gulf of Mexico basin. American Association of Petroleum Geologists Bulletin, 84, 1743–1774.

    Google Scholar 

  • Gozalpour, F., Ren, S. R., & Tohidi, B. (2005). CO2 EOR and storage in oil reservoirs. Oil & Gas Science and Technology, 60, 537–546.

    Article  Google Scholar 

  • Gülen, G., & Foss, M. (2011). Economic and regulatory considerations for clean coal (abs). American Association of Petroleum Geologists Annual Convention & Exhibition Abstracts, 20, 72.

    Google Scholar 

  • Halbouty, M. T. (1966). Stratigraphic-trap possibilities in upper Jurassic rocks, San Marcos Arch, Texas. American Association of Petroleum Geologists Bulletin, 50(1), 3–24.

    Google Scholar 

  • Hamilton, D. S. (1994). Increased oil recovery potential from barrier/strandplain reservoirs, Jackson-Yegua Trend, by geologically targeted infill drilling: examples from Seventy-Six West and Colmena-Cedro Hill fields, South Texas (Vol. 217). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Hamilton, M. R., Herzog, H. J., & Parsons, J. E. (2009). Cost and U.S. public policy for new coal power plants with carbon capture and sequestration. Energy Procedia, 1, 4487–4494.

    Article  Google Scholar 

  • Hammes, U., Hamlin, H. S., & Ewing, T. E. (2011). Geologic analysis of the upper Jurassic Haynesville Shale in east Texas and west Louisiana. American Association of Petroleum Geologists Bulletin, 95(10), 1643–1666.

    Article  Google Scholar 

  • Hentz, T. F. (2010). Sequence stratigraphy of the Upper Cretaceous (Cenomanian) Woodbine Group: chronostratigraphic integration of the East Texas Basin and East Texas field. In T. F. Hentz (Ed.), Sequence stratigraphy, depositional facies, and reservoir attributes of the Upper Cretaceous Woodbine Group, East Texas field (Vol. 274, pp. 1–16). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Hentz, T. F., & Ambrose, W. A. (2013). Sandstone trends, sequence framework, and depositional settings of the Upper Cretaceous Woodbine Group: “Eaglebine” play, southern East Texas Basin (abs.): American Association of Petroleum Geologists Search and Discovery Article No. 91063. Retrieved April 15, 2014, from http://www.searchanddiscovery.com/abstracts/html/2013/90163ace/abstracts/hent.htm?q=%2BtitleStrip%3Aeaglebine.

  • Holm, L. W., & Josendal, V. A. (1974). Mechanisms of oil displacement by carbon dioxide. Journal of Petroleum Technology, 26, 1427–1438.

    Article  Google Scholar 

  • Holm, L. W., & Josendal, V. A. (1982). Effect of oil composition on miscible-type displacement by carbon dioxide. Society of Petroleum Engineers Journal, 22(1), 87–98.

    Article  Google Scholar 

  • Holtz, M. H., Nance, P., & Finley, R. J. (2001). Reduction of greenhouse gas emissions through underground CO2 sequestration in Texas oil reservoirs. Environmental Geoscience, 8, 87–199.

    Google Scholar 

  • Holtz, M. H., Núñez-López, V., & Breton, C. (2005). Moving Permian Basin technology to the Gulf Coast: The geologic distribution of CO2 EOR potential in Gulf Coast reservoirs. West Texas Geological Society Publication 05-115.

  • Hosseini, S. A., Lashgari, H., Choi, J. W., Nicot, J.-P., Lu, J., & Hovorka, S. D. (2013). Static and dynamic reservoir modeling for geological CO2 sequestration at Cranfield, Mississippi, U.S.A. International Journal of Greenhouse Gas Control, 18, 449–462.

    Article  Google Scholar 

  • Hovorka, S. D. (2005). Frio brine pilot experiment—six months after injection. Greenhouse Issues, 77, 1–3.

    Google Scholar 

  • Hovorka, S. D., Choi, J.-W., Meckel, T. A., Trevino, R. H., Zeng, H., Kordi, M., et al. (2009). Comparing carbon sequestration in an oil reservoir to sequestration in a brine formation—field study. Energy Procedia, 1, 2051–2056.

    Article  Google Scholar 

  • Hovorka, S. D., Doughty, C. S., Benson, S. M., Pruess, K., & Knox, P. R. (2004). The impact of geological heterogeneity on CO2 storage in brine formations: A case study from the Texas Gulf Coast. In S. J. Baines & R. H. Worden (Eds.), Geological storage of carbon dioxide (pp. 147–163). London: Geological Society of London Special Publication No. 233.

  • Hovorka, S. D., Meckel, T. A., & Treviño, R. H. (2013). Monitoring a large-volume injection at Cranfield, Mississippi—Project design and recommendations. International Journal of Greenhouse Gas Control, 18, 345–360.

    Article  Google Scholar 

  • Kaiser, W. R. (1974). Texas lignite: Near-surface and deep-basin resources (Vol. 79). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Kaiser, W. R., Ambrose, M. L., Ayers, W. B., Jr., Blanchard, P. E., Collins, G. F., Fogg, G. E., et al. (1980a). Geology and groundwater hydrology of deep-basin lignite in the Wilcox Group of East Texas (Vol. 10). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Special Report.

  • Kaiser, W. R., Ambrose, M. L., Ayers, W. B., Jr., Blanchard, P. E., Collins, G. F., Fogg, G. E., et al. (1986). Geology and groundwater hydrology of deep-basin lignite in the Wilcox Group of East Texas. Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Special Report SR 10.

  • Kaiser, W. R., Ayers, W. B., Jr., & La Brie, L. W. (1980b). Lignite resources in Texas (Vol. 104). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • King, C., Coleman, S., Cohen, S., & Gülen, G. (2011). The economics of an integrated CO2 capture and sequestration system: Texas Gulf Coast case study. Energy Procedia, 4, 2588–2595.

    Article  Google Scholar 

  • King, C. W., Gülen, G., Essandoh-Yeddu, J., & Hovorka, S. (2009). Economic analysis of an integrated anthropogenic carbon dioxide network for capture and enhanced oil recovery along the Texas Gulf Coast. GCCC Digital Publication Series #09-18. The University of Texas at Austin, Bureau of Economic Geology. Retrieved April 4, 2014, from http://www.beg.utexas.edu/gccc/forum/codexdownloadpdf.php?ID=134.

  • Kolb, C. R., & van Lopik, J. R. (1966). Depositional environments of the Mississippi River deltaic plain—southeastern Louisiana. In U.S. Army Corps of Engineers Waterways Experiment Station Technical Report 3-483 and 3-484 (2 Vols.). Vicksburg, Mississippi (variously paginated).

  • Kordi, M., Hovorka, S., Milliken, K., Trevino, R., & Lu, J. (2010). Diagenesis and reservoir heterogeneity in the Lower Tuscaloosa Formation at Cranfield Field, Mississippi. Gulf Coast Association of Geological Societies Transactions, 60, 809.

    Google Scholar 

  • Kosters, E. C., Bebout, D. G., Seni, S. J., Garrett, C. M., Jr., Brown, L. F., Jr., Hamlin, H. S., Dutton, S. P., Ruppel, S. C., Finley, R. J., & Tyler, N. (1989). Atlas of major Texas gas reservoirs. Austin, TX: The University of Texas at Austin, Bureau of Economic Geology.

  • Kreitler, C. W., Collins, E. W., Davidson, E. D., Jr., Dix, O. R., Donaldson, G. A., Dutton, S. P., Fogg, G. E., Giles, A. B., Harris, D. W., Jackson, M. P. A., Lopez, C. M., McGowen, M. K., Muehlberger, W. R., Pennington, W. D., Seni, S. J., Wood, D. H., & Wuerch, H. V. (1981). Geology and geohydrology of the East Texas Basin: A report on the progress of nuclear waste isolation feasibility studies (Vols. 81–87). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Geological Circular.

  • Langenberg, M. A., Henry, D. M., & Chlebana, M. R. (1995). Performance and expansion plans for the double-displacement process in the Hawkins field unit. Society of Petroleum Engineers, SPE Paper, 28603, 301–308.

    Google Scholar 

  • Li, G. (2003). 4D seismic monitoring of CO2 flood in a thin fractured carbonate reservoir. The Leading Edge, 22(7), 690–695.

    Article  Google Scholar 

  • Lu, J., Milliken, K., Reed, R. M., & Hovorka, S. (2011). Diagenesis and sealing capacity of the middle Tuscaloosa mudstone at the Cranfield carbon dioxide injection site, Mississippi, U.S.A. Environmental Geosciences, 18(1), 35–53.

    Article  Google Scholar 

  • Lunt, I. A., Bridge, J. S., & Tye, R. S. (2004). A quantitative, three-dimensional depositional model of gravelly braided rivers. Sedimentology, 51, 377–414.

    Article  Google Scholar 

  • Mamora, D. D., & Seo, J. G. (2002). Enhanced gas recovery by carbon dioxide sequestration in depleted gas reservoirs. Society of Petroleum Engineers, SPE Paper 77347.

  • Mancini, E. A., Obid, J., Badali, M., Liu, K., & Parcell, W. C. (2008). Sequence-stratigraphic analysis of Jurassic and Cretaceous strata and petroleum exploration in the central and eastern Gulf Coastal Plain, United States. American Association of Petroleum Geologists Bulletin, 92, 1655–1686.

    Article  Google Scholar 

  • Mapel, W. J. (1967). Bituminous coal resources of Texas. U.S. Geological Survey Bulletin, 1242-D, D1–D28.

    Google Scholar 

  • Martin, R., Malpani, R., Lindsay, G., & Atwood, W. K. (2011). Understanding production for Eagle Ford-Austin Chalk System. Society of Petroleum Engineers, SPE Paper 145117.

  • McClellan, H. J., & Wendlandt, E. A. (1940). Developments in east Texas, during 1939. American Association of Petroleum Geologists Bulletin, 24(6), 1062–1068.

    Google Scholar 

  • McCollum, D. L., & Ogden, J. M. (2006). Techo-economic models for carbon dioxide compression, transport, and storage and correlations for estimating carbon dioxide density and viscosity. The University of California Davis, Institute of Transportation Studies, Report UCD-ITS-RR-06-14. Retrieved April 4, 2014, from http://pubs.its.ucdavis.edu/publication_detail.php?id=1047.

  • McGowen, J. H., & Groat, C. G. (1971). Van Horn Sandstone, West Texas: An alluvial fan model for mineral exploration (Vol. 72). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Merritt, M. B., & Groce, J. F. (1992). A case history of the Hanford San Andres Miscible CO2 project. Journal of Petroleum Technology, 44, 924–929.

    Article  Google Scholar 

  • Mohan, H., Carolus, M., & Biglarbigi, K. (2008). The potential for additional carbon dioxide flooding projects in the United States. Society of Petroleum Engineers, SPE Paper 113975.

  • Neill, C. A., & Allison, M. A. (2005). Subaqueous deltaic formation on the Atchafalaya Shelf, Louisiana. Marine Geology, 214, 411–430.

    Article  Google Scholar 

  • NETL (National Energy Technology Laboratory). (2014). Southeast regional carbon sequestration partnership (SECARB)—Phase II and Phase III. Retrieved March 27, 2014, from http://www.netl.doe.gov/research/proj?k=FC26-05NT42590.

  • Newcomer, A., & Apt, J. (2008). Implications of generator siting for CO2 pipeline infrastructure. Energy Policy, 36, 1776–1787.

    Article  Google Scholar 

  • Núñez-López, V., Holtz, M. H., Wood, D. J., Ambrose, W. A., & Hovorka, S. D. (2008). Quick-look assessments to identify optimal CO2 EOR storage sites. Environmental Geology, 54, 1695–1706.

    Article  Google Scholar 

  • Olariu, C., & Bhattacharya, J. P. (2006). Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research, 76, 212–233.

    Article  Google Scholar 

  • Olariu, C., Steel, R. J., & Petter, A. L. (2010). Delta-front hyperpycnal bed geometry and implications for reservoir modeling: Cretaceous Panther Tongue delta, Book Cliffs, Utah. American Association of Petroleum Geologists Bulletin, 94(6), 819–845.

    Article  Google Scholar 

  • Oldenburg, C. M., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15, 293–298.

    Article  Google Scholar 

  • Oliver, W. B. (1971). Depositional systems in the Woodbine Formation (Upper Cretaceous), northeast Texas (Vol. 73). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Ore, H. T. (1963). Some criteria for recognition of braided stream deposits (Vol. 3, pp. 1–14). Laramie, NY: Department of Geology Contributions to Geology, Wyoming University.

  • Parfomak, P. W., & Folger, P. (2008). Carbon Dioxide (CO2) pipelines for carbon sequestration: Emerging policy issues. Congressional Research Service, Report No. RL33971. Retrieved April 4, 2014, from http://www.marstonlaw.com/index_files/Emerging%20Policy%20issues%20for%20CO2%20pipelines%202008%20CORRECTED%20(2008-01-17%20(No%20RL33971).pdf.

  • Parker, N. (2003). Using natural gas transmission pipeline costs to estimate hydrogen pipeline costs. The University of California Davis, Institute of Transportation Studies, Report No. UCD-ITS-RR-04-3. Retrieved April 4, 2014, from http://escholarship.org/uc/item/9m40m75r.

  • Pavlovic, R. (1980). Kurten field: find another by stratigraphic prospecting. Gulf Coast Association of Geological Societies Transactions, 30, 197–202.

    Google Scholar 

  • Pearson, K. (2010). Geologic controls on Austin Chalk oil and gas production: Understanding a dual conventional-continuous accumulation. Gulf Coast Association of Geological Societies Transactions, 60, 557–570.

    Google Scholar 

  • Phillips, S., & Swift, D. J. P. (1985). Shelf sandstones in the Woodbine-Eagle Ford interval, East Texas: A review of depositional models. In Short course notes (Vol. 13, pp. 503–558). Oklahoma: Society of Economic Paleontologists and Mineralogists.

  • Pittaway, K. R., & Rosato, R. J. (1991). The Ford Geraldine Unit CO2 flood—update 1990. Society of Petroleum Engineers. Reservoir Engineering, 6, 410–414.

    Article  Google Scholar 

  • Porębski, S. J., & Steel, R. J. (2003). Shelf-margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth-Science Reviews, 62, 283–326.

    Article  Google Scholar 

  • Power-Technology. (2014). Callide coal-fired power stations, Queensland, Australia. Retrieved April 4, 2014, from http://www.power-technology.com/projects/callide-coal/.

  • Preston, C., Monea, M., Jazrawi, W., Brown, K., Whittaker, S., White, D., et al. (2005). IEA HGH Weyburn CO2 monitoring and storage project. Fuel Processing Technology, 86, 1547–1568.

    Article  Google Scholar 

  • Preston, C., Whittaker, S., Rostron, B., Chalaturnyk, R., White, D., Hawkes, C., et al. (2009). IEA GHG Weyburn-Midale CO2 monitoring and storage project—moving forward with the Final Phase. Energy Procedia, 1, 1743–1750.

    Article  Google Scholar 

  • Railroad Commission of Texas. (2012). Surface mining: Texas coal production. Retrieved April 4, 2014, from http://www.rrc.state.tx.us/programs/mining/COALPRODthru2012.pdf.

  • Rubin, E. S., Chen, C., & Rao, A. B. (2007). Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy, 35, 4444–4454.

    Article  Google Scholar 

  • Ruppert, L. F., Kirschbaum, M. A., Warwick, P. D., Flores, R. M., Affolter, R. H., & Hatch, J. R. (2002). The U.S. Geological Survey’s national coal resource assessment. International Journal of Coal Geology, 50, 247–274.

    Article  Google Scholar 

  • SanFilipo, J. R. (1999). Some speculations on coal-rank anomalies of the South Texas Gulf Province and adjacent areas of Mexico and their impact on coal-bed methane and source rock potential. U.S. Geological Survey Open-File Report 99-301, pp. 37–47.

  • Schempf, F. J. (2001). CO2 injection grows in Gulf States. Retrieved April 4, 2014, from http://www.epmag.com/EP-Magazine/archive/CO2-injection-grows-Gulf-states_3551.

  • Schumm, S. A. (1981). Evolution and response of the fluvial system, sedimentological implications. In F. G. Ethridge & R. M. Flores (Eds.), Recent and ancient non-marine depositional environments: Models for exploration (Vol. 31, pp. 19–29). California: Society of Economic Paleontologists and Mineralogists (SEPM) Special Publication.

    Chapter  Google Scholar 

  • Shaw, J., & Bachu, S. (2002). Screening, evaluation, and ranking of oil reservoirs suitable for CO2 flood EOR and carbon dioxide sequestration. Journal of Canadian Petroleum Technology, 41, 51–61.

    Article  Google Scholar 

  • Siemers, C. T. (1978). Submarine fan deposition of the Woodbine-Eagleford interval (Upper Cretaceous). Gulf Coast Association of Geological Societies Transactions, 28, 493–533.

    Google Scholar 

  • Skerlec, G. M. (1992). Snap, crackle & pop: Risking top seal integrity (abs). American Association of Petroleum Geologists Bulletin, 76, 121.

    Google Scholar 

  • Smith, N. D. (1970). The braided stream depositional environment: Comparison of the Platte River with some Silurian clastic rocks, North-Central Appalachians. Geological Society of America Bulletin, 81, 2993–3014.

    Article  Google Scholar 

  • Smith, N. D. (1974). Sedimentology and bar formation in the Upper Kicking Horse River, a braided outwash stream. Journal of Geology, 82, 205–224.

    Article  Google Scholar 

  • Southwest Power Pool. (2011). Southwest Power Pool Summary. Retrieved April 4, 2014, from http://www.spp.org/.

  • Stalkup, F. I. (1978). Carbon dioxide miscible flooding: Past, present, and outlook for the future. Journal of Petroleum Technology, 30(8), 1102–1112.

    Article  Google Scholar 

  • Stancliffe, R. J., & Adams, E. R. (1986). Lower Tuscaloosa fluvial channel styles at Liberty field, Amite County, Mississippi. Gulf Coast Association of Geological Societies Transactions, 36, 305–313.

    Google Scholar 

  • Texas Department of Transportation. (2009). State railroad map. Retrieved April 4, 2014, from http://ftp.dot.state.tx.us/pub/txdot-info/rail/railroad_map.pdf.

  • Theiss, R. M. (1983). Environment of deposition of Woodbine and Eagleford sandstones, Leon, Houston, and Madison Counties, Texas. M.S. Thesis, Texas A&M University.

  • Turner, J. R., & Conger, S. J. (1981). Environment of deposition and reservoir properties of the Woodbine sandstone at Kurten field, Brazos County, Texas. Gulf Coast Association of Geological Societies Transactions, 31, 213–232.

    Google Scholar 

  • Tye, R. S., & Coleman, J. M. (1988). Evolution of Atchafalaya lacustrine deltas, south-central Louisiana. Sedimentary Geology, 65, 95–112.

    Article  Google Scholar 

  • Tyler, N., & Ambrose, W. A. (1985). Facies architecture and production characteristics of strandplain reservoirs in the Frio Formation, Texas (Vol. 146). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

  • Tyler, N., & Finley, R. J. (1991). Architectural controls on the recovery of hydrocarbons from sandstone reservoirs. In A. D. Miall & N. Tyler (Eds.), The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery (Vol. 3, pp. 1–5). California: Society of Economic Paleontologists and Mineralogists (SEPM) Concepts in Sedimentology.

    Chapter  Google Scholar 

  • Tyler, N., Galloway, W. E., Garrett, C. M., Jr., & Ewing, T. E. (1984). Oil accumulation, production characteristics, and targets for additional recovery in major oil reservoirs of Texas (Vol. 84-2). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Geologic Circular.

  • USDE. (2009). Clean coal research. Retrieved April 4, 2014, from U.S. Department of Energy (USDE) http://www.fossil.energy.gov/programs/powersystems/gasification/index.html.

  • Wang, F. P. (2010). Engineering characterization of East Texas oil field: North and south pilot studies. In T. F. Hentz (Ed.), Sequence stratigraphy, depositional facies, and reservoir attributes of the Upper Cretaceous Woodbine Group, East Texas field (Vol. 274, pp. 95–114). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.

    Google Scholar 

  • Warwick, P. D., Aubourg, C. E., & Willett, J. C. (1999). Tertiary coals in South Texas: Anomalous cannel-like coals of Webb County (Claiborne Group, Eocene) and lignites of Atascosa County (Jackson Group, Eocene)—geologic setting, character, source-rock, and coal-bed methane potential. U.S. Geological Survey Open-File Report 99-301.

  • Werren, E. G., Shew, R. D., Adams, E. R., & Stancliffe, R. J. (1990). Meander-belt reservoir geology, mid-dip Tuscaloosa, Little Creek Field, Mississippi. In J. H. Barwis, J. G. McPherson, & J. R. J. Studlick (Eds.), Sandstone petroleum reservoirs (pp. 85–107). Berlin: Springer.

    Chapter  Google Scholar 

  • Wilcox, F. B. (1964). Old San Antonio Road field (O.S.R.). Houston Geological Society Bulletin, 6(5), 17–21.

    Google Scholar 

  • Wilson, E. B. (1938). Navarro Crossing field. American Association of Petroleum Geologists Bulletin, 22(11), 1600–1603.

    Google Scholar 

  • Wood, D., & Giles, A B. (1982). Hydrocarbon accumulation patterns in the East Texas Salt Dome Province (Vols. 82–86). Austin, TX: The University of Texas at Austin, Bureau of Economic Geology Geologic Circular.

  • Woolf, K., & Wood, L. (2010). The regional character of the Lower Tuscaloosa Sandstone depositional systems (Late Cretaceous) and implications for the influence of basement structure on the depositional trends. Gulf Coast Association of Geological Societies Transactions, 60, 847.

    Google Scholar 

  • Wright, L. D., Wiseman, W. J., Bornhold, B. D., Prior, D. B., Suhayda, J. N., Keller, G. H., et al. (1988). Marine dispersal and deposition of Yellow River silts by gravity-driven underflows. Nature, 332, 629–632.

    Article  Google Scholar 

  • Yin, Y. (2013). A new stochastic modeling of 3-D mud drapes inside point bar sands in meandering river deposits. Natural Resources Research, 22(4), 311–320.

    Article  Google Scholar 

  • Zweigel, P., Arts, R., Lothe, E., & Lindeberg, E. (2004). Reservoir geology of the Utsira formation at the first industrial-scale under-ground CO2 storage site (Sleipner area, North Sea). In S. Baines & R. Worden (Eds.), Geological storage for CO 2 emissions reductions (Vol. 233, pp. 165–180). London: Geological Society of London, Special Publication.

    Google Scholar 

Download references

Acknowledgments

The paper benefitted from insightful comments and suggestions from two anonymous reviewers. The authors acknowledge the Gulf Coast Carbon Center at the Bureau of Economic Geology for access to its database on oil fields in Texas with EOR potential from miscible-CO2 flooding. Illustrations were prepared by Cathy Brown and Jason Suarez in the Media Information Technology Group. Chris Parker edited the manuscript. Publication was authorized by the Director, Bureau of Economic Geology, The University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Ambrose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrose, W.A., Breton, C., Núñez-López, V. et al. EOR Potential from CO2 Captured from Coal-Fired Power Plants in the Upper Cretaceous (Cenomanian) Woodbine Group, East Texas Basin, and Southeastern Texas Gulf Coast, USA. Nat Resour Res 24, 161–188 (2015). https://doi.org/10.1007/s11053-014-9242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-014-9242-z

Keywords

Navigation