Natural Resources Research

, Volume 23, Issue 4, pp 367–377 | Cite as

Contribution of Geophysics to the Management of Water Resources: Case of the Ariana Agricultural Sector (Eastern Mejerda Basin, Tunisia)

  • R. Ben Lasmar
  • R. Guellala
  • B. Sarsar Naouali
  • L. Triki
  • M. H. Inoubli


In Tunisia, the Mejerda basin is the most important agricultural sector. Identification of additional water sources and good management of current and new resources is required to maintain and increase its productivity. The present study concerns the Ariana region (north-east of Tunisia) covering the eastern part of Mejerda basin. Lithological columns, well logs, vertical electrical soundings, and gravity data were analyzed and interpreted to give more precise information for exploitation of the water resources of the Ariana region. Lithological columns, well logs, and geoelectrical models reveal that the permeable Quaternary alluvial deposits, the Upper Campanian–Lower Maestrichtian, Albian and Barremian limestones, and Valanginian–Hauterivian sandstones are the main aquifers in Ariana. Comparison of geoelectrical cross sections to the Bouguer anomaly map of the Ariana region reveals tectonic influence on the geometry of the aquifers. The folded structures attributed to the Tortonian compressive stress and the tectonic movements in N–S, E–W, NW–SE, and NE–SW directions have resulted in the compartmentalization of Ariana’s aquifers into subsided and raised blocks. This reconstituted geometry of the region influenced the depth of burial of permeable lithologies and inhibited groundwater circulation in some localities.


Well logs vertical electrical soundings gravity data hydrogeology Ariana Tunisia 



The authors are indebted to Dr. John Carranza and anonymous reviewers for their comments, constructive criticism, and corrections which helped to improve the original version of this manuscript.


  1. Amiri, A., Chaqui, A., Hamdi Nasr, I., Inoubli, M. H., Ben Ayed, N., & Tlig, S. (2011). Role of preexisting faults in the geodynamic evolution of Northern Tunisia, insights from gravity data from the Medjerda valley. Tectonophysics, 506, 1–10.CrossRefGoogle Scholar
  2. Asfahani, J. (2006). Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid region in Khanasser valley, Syria. Journal of Arid Environments, 68, 31–52.CrossRefGoogle Scholar
  3. Ben Ayed, N. (1986). Evolution tectonique de l’avant pays de la chaine alpine de la Tunisie du début du mésozoïque à l’actuel. Thèse es- Sciences, Univ. Paris Sud, centre Orsay, pub.Google Scholar
  4. Benassi, R., Jallouli, C., Hammami, M., & Turki, M. M. (2006). The structure of Jebel El Mourra, Tunisia: A diapiric structure causing a positive gravity anomaly. Terra Nova, 18, 432–439.CrossRefGoogle Scholar
  5. Blakely, R., & Simpson, R. (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51, 1494–1498.CrossRefGoogle Scholar
  6. Briggs, I. (1974). Machine contouring “using minimum curvature”. Geophysics, 39, 39–48.CrossRefGoogle Scholar
  7. Chapellier, D. (1992). Well logging in hydrogeology. Brook field, MA: A.A. Balkema Publishers.Google Scholar
  8. Cordell, L. (1979). Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin. In New Mexico Geological Society Guidebook, 30th Field Conference (pp. 59–64), New Mexico.Google Scholar
  9. Cordell, L., & Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In W. J. Hinze (Ed.), The utility of the regional gravity and magnetic anomaly maps (pp. 181–197). Tulsa, OK: Society of Exploration Geophysicists.CrossRefGoogle Scholar
  10. Cudennec, C., Leduc, C., & Koutsoyiannis, D. (2007). Dryland hydrology in Mediterranean regions review. Hydrogeological Sciences Journal, 52, 1077–1087.Google Scholar
  11. Desbrandes, R. (1968). Théorie et interprétation des diagraphies. Paris: Publications de l’institut Français du Pétrole.Google Scholar
  12. Ellis, D.V., & Singer, J.M. (2007). Well logging for earth scientists. New York: Springer. ISBN: 1401037384.Google Scholar
  13. Gouasmia, M., Gasmi, M., Mhamdi, A., Bouri, S., & Ben Dhia, H. (2006). Prospection géoéléctrique pour l’étude de l’aquifère thermal des calcaires récifaux Hmeima-Boujaber (Centre ouest de la Tunisie). Comptes rendus des Géosciences, 338, 1219–1227.CrossRefGoogle Scholar
  14. Guellala, R., Ben Marzoug, H., Inoubli, M. H., & Moumni, L. (2011). Apports de la Sismique Réflexion à l’étude de l’aquifère du Continental Intercalaire du Jérid (Tunisie). Hydrological Sciences Journal, 5, 1040–1052.CrossRefGoogle Scholar
  15. Guellala, R., Inoubli, M. H., & Amri, F. (2009). Nouveaux éléments sur la structure de l’aquifère superficiel de Ghardimaou (Tunisie): contribution de la géophysique électrique. Hydrological Sciences Journal, 54, 974–983.CrossRefGoogle Scholar
  16. Hamdi Nasr, I., Ben Salem, A., Inoubli, M. H., Dhifi, J., Alouani, R., Chaqui, A., et al. (2008). Apports de la gravimétrie dans la caractérisation des structures effondrées dans la région de Nebeur (Nord Ouest de la Tunisie). Swiss Journal of Geosciences, 101, 17–27.CrossRefGoogle Scholar
  17. Hearst, J.R., & Nelson, P.H. (1985). Well logging for physical properties. New York: McGraw-Hill. ISBN 0070276986.Google Scholar
  18. Hsieh, B. Z., Lewis, C., & Lin, Z. S. (2005). Lithology identification of aquifers from geophysical well logs and fuzzy logic analysis: Shui-Lin Area, Taiwan. Computers & Geosciences Journal, 31, 263–275.CrossRefGoogle Scholar
  19. Jallouli, C., & Mickus, K. (2000). Regional gravity analysis of the crustal structure of Tunisia. Journal of African Earth Sciences, 30, 63–78.CrossRefGoogle Scholar
  20. Jauzein, A. (1967). Notice de la feuille 13 de l’Ariana. Tunis: Service géologique de Tunisie.Google Scholar
  21. Jenny, J. & Borreguerro, M. (1993). WINSEV, programme d’interprétation des sondages électriques verticaux réalisés selon le dispositif Schlumberger. W-Geosoft.Google Scholar
  22. Jouirou, M. (1982). Faciès sédimentaires et processus dynamiques dans la formation d’un milieu lagunaire: Evolution holocène et actuelle du lac de Tunis et de ses abords. Thèse de Doctorat, Université de Bordeaux I.Google Scholar
  23. Kacem, J. (2004). Etude sismotectonique et évaluation de l’Aléas sismique régional du Nord-Est de la Tunisie: Apport de la sismique réflexion dans l’identification des sources sismogeniques. PhD thesis, Université Tunis II.Google Scholar
  24. Keller, G.V., & Frischknecht, F.C. (1982). Electrical methods in geophysical prospecting. Oxford: Pergamon Press.Google Scholar
  25. Khattach, D., Keating, P., Mili, M., Chennouf, T., Andreieux, P., & Milhi, A. (2004). Apport de la gravimétrie à l'étude de la structure du bassin de Triffa (Maroc nord–oriental): Implications hydrogéologiques. Comptes Rendus Géosciences, 336, 1427–1432.Google Scholar
  26. Kleh, M., Eichorst, F., & Schafer, A. (2002). Facies interpretation from wells logs applied to the tertiary lower Rhine basin fill. Netherlands Journal of Geosciences, 2, 167–176.Google Scholar
  27. Lajmi, T., Biely, A., & Pini, S. (1971). Carte géologique de la région d’Ariana; feuille n° 13.Google Scholar
  28. Maamri, R. (1998). La fracturation et ses conséquences sur les risques sismiques et naturels de la région de Tunis. DEA, Université de Tunis.Google Scholar
  29. Najine, A., Jaffal, M., El Khammari, K., Aïfa, T., Khattach, D., Himi, M., et al. (2006). Contribution de la gravimétrie à l’étude de la structure du bassin de Tadla (Maroc): Implications hydrogéologiques. Comptse rendus des Geosciences, 338, 676–682.CrossRefGoogle Scholar
  30. ONM (2001). Campagne gravimétrique CG4. Coupures 1/50 000 de Ariana, Tunis, Marsa et Gamaret.Google Scholar
  31. Pertu, N., Wattanasen, K., Phommasone, K., & Elming, S. (2011). Characterization of aquifers in Vientiane Basin, Laos, using magnetic resonance sounding and vertical electrical sounding. Journal of Applied Geophysics, 73, 207–220.CrossRefGoogle Scholar
  32. Pini, S. (1966). Notice explicative de la feuille 13 de l’Ariana. Tunis: Service géologique.Google Scholar
  33. Prieto, C. (1996). Gravity/magnetic signatures of various geologic models—An exercise in pattern recognition. IGC Footnote Series, 4(4), 1–24.Google Scholar
  34. Rapti-Caputo, D., Bratus, A., & Santarato, G. (2009). Strategic groundwater resources in the Tagliamento River basin (northern Italy): Hydrogeological investigation integrated with geophysical exploration. Hydrogeology Journal, 17, 1393–1409.CrossRefGoogle Scholar
  35. Rider, M.H. (1986). The geological interpretation of wells logs. Blackie: Halsted Press. ISBN: 0470202815.Google Scholar
  36. Sarsar Naouali, B., Hamdi Naser, I., Amiri, A., Chaqui, A., & Inoubli, M.H. (2010). Gravity data as a tool for delineating subsurface geology of Ariana region (Diapir zone, Tunisia). EGM 2010 International Workshop: Adding New Value to Electromagnetic, Gravity and Magnetic Methods for Exploration, Expanded Abstracts.Google Scholar
  37. Sarsar Naouali, B., Inoubli, M. H., Amiri, A., Chaqui, A., & Hamdi, I. (2011). Subsurface geology of the Ariana region (Diapir zone, northern Tunisia) by means of gravity analysis. European Association of Geoscientists & Engineers, Geophysical Prospecting, 59, 983–997.CrossRefGoogle Scholar
  38. Sebei, K., Inoubli, M. H., Boussiga, H., Tlig, S., Alouani, R., & Boujamaoui, M. (2007). Seismic stratigraphy, tectonics and depositional history in the Halk el Menzel region, NE Tunisia. Journal of African Earth Sciences, 47, 9–29.CrossRefGoogle Scholar
  39. Serra, O. (1984). Fundamentals of well log interpretation. The acquisition of logging data. Amsterdam: Elsevier. ISBN: 0444416250.Google Scholar
  40. Schoeffler, J. (1975). Gravimétrie appliquée aux recherches structurales et à la prospection pétrolière et minière (p. 288). Technip, Paris.Google Scholar
  41. Telford, W. M., Geldart, B. P., & Sheriff, R. E. (1976). Applied geophysics. London: Cambridge University Press.Google Scholar
  42. Tizro, A. T., Voudouris, K. S., Salehzade, M., & Mashayekhi, H. (2010). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: A case study from West Iran. Hydrogeology Journal, 18, 917–929.CrossRefGoogle Scholar
  43. Truillet, R., & Turki, M. M. (1980). La tectonique tangentielle dans la zone des diapirs. L’exemple de Djebel Ammar (Tunisie septentrionale). Comptes rendus de l’académie des sciences, 291, 325–327.Google Scholar
  44. Zouhri, L. (2001). L’aquifere du bassin de la Mamora, Maroc: géométrie et écoulement souterrains (Aquifer of the Mamora basin, Morocco: geometry and groundwater flow). Journal of African Earth Sciences, 32, 837–850.CrossRefGoogle Scholar
  45. Zouhri, L., Gorini, C., Mania, J., Deffontaines, B., & Zerouali, A. (2004). Spatial distribution of resistivity in the hydrogeological systems, and identification of the catchment area in the Rharb basin, Morocco. Hydrological Sciences Journal, 49(3), 387–398.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2014

Authors and Affiliations

  • R. Ben Lasmar
    • 1
  • R. Guellala
    • 2
  • B. Sarsar Naouali
    • 1
    • 3
  • L. Triki
    • 4
  • M. H. Inoubli
    • 1
  1. 1.Department of Geology, Faculty of Science of TunisiaUnité de Recherches de Geophysique Appliquée aux Materiaux et aux Minerais (URGAMM)El ManarTunisia
  2. 2.Georesources LaboratoryCenter of Research and Technology of Water (CERTE)Borj CedriaTunisia
  3. 3.Entreprise Tunisienne d’Activité Petroliére (ETAP)Charguia IITunisia
  4. 4.Ministry for Agriculture and Water ResourcesTunisTunisia

Personalised recommendations