Natural Resources Research

, Volume 17, Issue 3, pp 167–179 | Cite as

The Rapid Retreat of Jakobshavns Isbræ, West Greenland: Field Observations of 2005 and Structural Analysis of its Evolution

  • Helmut Mayer
  • Ute C. Herzfeld


Jakobshavns Isbræ in West Greenland (terminus at ≈69° 10′ N/50° W), a major outlet glacier of the Greenland Ice Sheet and a continuously fast-moving ice stream, has long been the fastest moving and one of the most productive glaciers on Earth. It had been moving continuously at speeds of over 20 m/day with a stable front position throughout most of the latter half of the twentieth century, except for relatively small seasonal changes. In 2002, the ice stream apparently suddenly entered a phase of rapid retreat. The ice front started to break up, the floating tongue disintegrated, and the production of icebergs increased. In July 2005, we conducted an extensive aerial survey of Jakobshavns Isbræ to measure and document the present state of retreat compared to our previous field observations since 1996. We use an approach that combines structural analysis of deformation features with continuum mechanics to assess the kinematics and dynamics of glaciers, based on aerial imagery, satellite data and GPS measurements. Results from interpretation of ERS-SAR and ASTER data from 1995 to 2005 in combination with aerial imagery from 1996 to 2005 shed light on the question of changes versus stability and their causes in the Jakobshavns Isbræ dynamical system. The recently observed retreat of Jakobshavns Isbræ is attributed to climatic warming, rather than to an inherent change in the glaciodynamic system. Close to the retreating front, deformation structures are characteristic of extension and disintegration. Deformation provinces that do not border the retreating front have had the same deformation characteristics throughout the past decade (1996–2005).


Structural geology structural glaciology fast-moving glaciers Greenland glaciology satellite data SAR data ASTER data 



We would like to thank our pilots Dr. med. Thomas Rose (private), Jan Wilken and Egon Dietz (Grønlandsfly) and Bo Isaaksen (Air Alpha) for excellent survey flights, Monika Stauber, Oliver Zahner and Marion Stellmes, Geomathematik Universität Trier, and Steven Sucht, CIRES, University of Colorado, for assistance with acquisition and processing of the 1995–1999 ERS SAR data, Koni Steffen, CIRES, University of Colorado, for acquisition of the raw ASTER data from 2003, and to Ralf Greve for helpful suggestions on the manuscript. Support provided by Deutsche Forschungsgemeinschaft (grants He 1547/4, He1547/8 and Ma2486/1) and through a CIRES Visitor Fellowship (UCH) is gratefully acknowledged.


  1. Abdalati W., Manizade S., Golder J., Thomas R. H., Krabill W., Csatho B. (2003) Recent increase in flow rates of the Jakobshavn Isbræ, Greenland. Eos Trans. Am. Geophys. Union, 84(46 Suppl.):F370Google Scholar
  2. Alley R. B. , Whillans I. M. (1991) Changes in the West Antarctic Ice Sheet. Science 254:950–963CrossRefGoogle Scholar
  3. Bennike, O., Mikkelsen, N., Klinge Pedersen, H., and Weidick, A., eds., 2004, Ilulissat Icefjord. Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 116 ppGoogle Scholar
  4. Clarke G. K. C. (1987) Fast glacier flow: ice streams, surging, and tidewater glaciers. J. Geophys. Res. 92(B9):8835–8841CrossRefGoogle Scholar
  5. Echelmeyer K., Clarke T. S., Harrison W. D. (1991) Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part i. Surface morphology. J. Glaciol. 37(127):368–382Google Scholar
  6. Echelmeyer K., Harrison W. D. (1990) Jakobshavns Isbræ, West Greenland: seasonal variations in velocity—or lack thereof. J. Glaciol. 36:82–88Google Scholar
  7. Herzfeld, U. C., 1998, The 1993–1995 surge of Bering Glacier (Alaska)—a photographic documentation of crevasse patterns and environmental changes. Trierer Geograph. Studien 17: 211 pp, Geograph. Gesellschaft Trier and Fachbereich VI—Geographie/Geowissenschaften, Universität Trier, TrierGoogle Scholar
  8. Herzfeld, U. C., Box, J. E., Steffen, K., Mayer, H., Caine, N., and Losleben, M. V., 2006, A case study on the influence of snow and ice surface roughness on melt energy: Zeitschrift Gletscherkunde Glazialgeol, v. 39 (2003/2004, printed 2006), p. 1–42.Google Scholar
  9. Herzfeld U. C., Clarke G. K. C., Mayer H., Greve R. (2004) Derivation of deformation characteristics in fast-moving glaciers. Comput. Geosci. 30:291–302CrossRefGoogle Scholar
  10. Herzfeld U. C., Mayer H. (1997) Surge of Bering Glacier and Bagley Ice Field, Alaska: an update to August 1995 and an interpretation of brittle-deformation patterns. J. Glaciol. 43(145):427–434Google Scholar
  11. Herzfeld U. C., Mayer H. (2003) Seasonal comparison of ice-surface structures in the ablation area of Jakobshavn Isbræ drainage system, West Greenland. Ann. Glaciol. 37:199–206CrossRefGoogle Scholar
  12. Herzfeld U. C., Mayer H., Feller W., Mimler M. (1999) Glacier roughness surveys of Jakobshavns Isbrae Drainage Basin, West Greenland, and morphological characterization. Zeitschrift für Gletscherkunde und Glazialgeologie 35(2):117–146Google Scholar
  13. Herzfeld U. C., Mayer H., Feller W., Mimler M. (2000a) Geostatistical analysis of glacier-roughness data. Ann. Glaciol. 30:235–242CrossRefGoogle Scholar
  14. Herzfeld U. C., Stauber M., Stahl N. (2000b) Geostatistical characterization of ice surfaces from ERS-1 and ERS-2 SAR data, Jakobshavn Isbræ, Greenland. Ann. Glaciol. 30:224–234CrossRefGoogle Scholar
  15. Hollin J. T. (1962) On the glacial history of Antarctica. J.Glaciol. 4(32):173–195Google Scholar
  16. Hughes T. J. (1973) Is the West Antarctic ice sheet disintegrating? J. Geophys. Res. 78:7884–7910CrossRefGoogle Scholar
  17. Huybrechts P. (1993) Glaciological modelling of the late cenozoic East Antarctic ice sheet: stability or dynamism? Gegrafiska Annaler 75A:221–238CrossRefGoogle Scholar
  18. Joughin I., Abdalati W., Fahnestock M. (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432(7017):608–609CrossRefGoogle Scholar
  19. Krabill W., Frederick E., Manizade S., Martin C., Sonntag J., Swift R., Thomas R., Wright W., Yungel J. (1999) Rapid thinning of parts of the southern Greenland ice sheet. Science 283:1522–1524CrossRefGoogle Scholar
  20. Luckman, A., and Murray, T. (2005) Seasonal variation in velocity before retreat of Jakobshavn Isbræ, Greenland: Geophys. Res. Lett. 32, L08501. doi: 10.1029/2005GL022519.
  21. Mayer H., Herzfeld U. C. (2000) Structural glaciology of the fast-moving Jakobshavn Isbræ, Greenland, compared to the surging Bering Glacier, Alaska, U.S.A. Ann. Glaciol. 30:243–249CrossRefGoogle Scholar
  22. Mayer, H. and Herzfeld, U. C., 2001, A structural segmentation, kinematic analysis and dynamic interpretation of Jakobshavns Isbræ, West Greenland: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 37, no. 2, (2001, printed 2002), p. 107–123.Google Scholar
  23. Mercer J. H. (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271:321–325CrossRefGoogle Scholar
  24. Muszynski I., Birchfield G. E. (1987) A coupled marine ice stream—ice shelf model. J. Glaciol. 33:3–15Google Scholar
  25. Pelto M. S., Hughes T. J., Brecher H. H. (1989) Equilibrium state of Jakobshavns Isbræ, West Greenland. Ann. Glaciol. 12:127–131Google Scholar
  26. Podlech S., Weidick A. (2004) A catastrophic break-up of the front of Jakobshavn Isbræ, West Greenland, 2002/03. J. Glaciol. 50(168):153–154CrossRefGoogle Scholar
  27. Schubert G., Yuen D. A. (1982) Initiation of ice ages by creep instability and surging of the East Antarctic ice sheet. Nature 292:127–130CrossRefGoogle Scholar
  28. Steffen K., Box J. E. (2001) Surface climatology of the Greenland ice sheet: Greenland climate network 1995–1999. J. Geophys. Res 106(D24):33951–33964CrossRefGoogle Scholar
  29. Thomas R. H. (1977) Calving bay dynamics and ice sheet retreat up the St. Lawrence valley system. Geogr. Phys. Quat. 31:167–177Google Scholar
  30. Thomas R. H., Abdalati W., Frederick E., Krabill W. B., Manizade S., Steffen K. (2003) Investigation of surface melting and dynamic thinning on Jakobshavn Isbræ, Greenland. J. Glaciol. 49(165):231–239CrossRefGoogle Scholar
  31. Thomas R. H., Bentley C. R. (1978) A model for Holocene retreat of the West Antarctic ice sheet. Quat. Res. 10:150–170CrossRefGoogle Scholar
  32. van der Veen C. J. (1985) Response of a marine ice sheet to changes at the grounding line. Quat. Res. 24: 257–267CrossRefGoogle Scholar
  33. Vandrekort Nordgrønland, Ilulissat, Scale 1:100000, contour interval 25 m, 1995/96, Compukort, Denmark.Google Scholar
  34. Vaughan D. G. (1993) Implications of break-up of Wordie Ice Shelf, Antarctica for sea level. Antarct. Sci. 5(4):403–408CrossRefGoogle Scholar
  35. Zwally H. J., Abdalati W., Herring T., Larson K., Saba J., Steffen K. (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297(5579):218–222CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geology 2008

Authors and Affiliations

  1. 1.UNAVCOBoulderUSA
  2. 2.CIRESUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations