Natural Resources Research

, Volume 16, Issue 2, pp 85–92 | Cite as

Spatial Analysis Techniques as Successful Mineral-Potential Mapping Tools for Orogenic Gold Deposits in the Northern Fennoscandian Shield, Finland

  • Vesa Nykänen
  • V. Juhani Ojala


Geoscientific Information Systems (GIS) provide tools to quantitatively analyze and integrate spatially referenced information from geological, geophysical, and geochemical surveys for decision-making processes. Excellent coverage of well-documented, precise and good quality data enables testing of variable exploration models in an efficient and cost effective way with GIS tools. Digital geoscientific data from the Geological Survey of Finland (GTK) are being used widely as spatial evidence in exploration targeting, that is ranking areas based on their exploration importance. In the last few years, spatial analysis techniques including weights-of-evidence, logistic regression, and fuzzy logic, have been increasingly used in GTK’s mineral exploration and geological mapping projects. Special emphasis has been put into the exploration for gold because of the excellent data coverage within the prospective volcanic belts and because of the increased activity in gold exploration in Finland during recent years. In this paper, we describe some successful case histories of using the weights-of-evidence method for the Au-potential mapping. These projects have shown that, by using spatial modeling techniques, exploration targets can be generated by quantitatively analyzing extensive amounts of data from various sources and to rank these target areas based on their exploration potential.


Geographic Information System (GIS) mineral-potential mapping prospectivity weights of evidence logistic regression fuzzy logic orogenic gold Central Lapland Finland 


  1. Agterberg F. P. 1974, Automatic contouring of geological maps to detect target areas for mineral exploration. Math. Geology 6(4): 373–395CrossRefGoogle Scholar
  2. Agterberg F. P., Cheng Q. 2002 Conditional independence test for weights-of-evidence modeling. Natural Resources Research 11(4): 249–255CrossRefGoogle Scholar
  3. Bonham-Carter G. F. 1994 Geographic Information Systems for geoscientists – modelling with GIS: Computer Methods in the Geosciences 13. Pergamon Press, Oxford, p 398Google Scholar
  4. Carranza E. J. M. 2004 Weights of evidence modeling of mineral potential: A case study using small number of prospects, Abra, Philippines. Natural Resources Research 13(3):173–187CrossRefGoogle Scholar
  5. Carranza E. J. M., Hale M. 2001 Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Exploration and Mining Geology 10(3):165–175CrossRefGoogle Scholar
  6. Cheng Q. 2004 Application of weights of evidence method for assessment of flowing wells in the greater Toronto Area: Canada. Natural Resources Research 13(2):77–86CrossRefGoogle Scholar
  7. Chung C. F., Agterberg F. P. 1980 Regression models for estimating mineral resources from geological map data. Math. Geology 12(5):472–488Google Scholar
  8. Eilu, P., 1999, FinGOLD – a public database on gold deposits in Finland: Geol. Survey Finland, Rept. Invest. 146, 224 pGoogle Scholar
  9. Eilu, P., 2006, Gold deposits and prospects in Finland: (Accessed 4 December 2006)Google Scholar
  10. Eilu P., Sorjonen-Ward P., Nurmi P., Niiranen T. 2003 A review of gold mineralization styles in Finland; A group of papers devoted to the metallogeny of gold in the Fennoscandian Shield. Economic Geology 98(7):1329–1353CrossRefGoogle Scholar
  11. GTK, 2005, David Groves: The gold potential of Finland: an initial appraisal, (Accessed 4 December 2006)Google Scholar
  12. Goldfarb, R. J., Baker, T., Dubé, B., Groves, D. I., Hart, C. J. R., and Gosselin, P., 2005, Distribution, character, and genesis of gold deposits in metamorphic terranes: Soc. Econ. Geology, Economic Geology 100th Ann. Vol., p. 407–450Google Scholar
  13. Groves D. I., Goldfarb R. J., Gebre-Mariam M., Hagemann S. G., Robert F., Arne D. C. 1998 Orogenic gold deposits; a proposed classification in the context of their crustal distribution and relationship to other gold deposit types; Mesothermal gold mineralization in space and time. Ore Geology Reviews 13(1–5): 7–27CrossRefGoogle Scholar
  14. Harris D. P., Pan G. 1999 Mineral favorability mapping; a comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research 8(2): 93–109CrossRefGoogle Scholar
  15. Harris J. R., Sanborn-Barrie M., Panagapko D. A., Skulski T., Parker J. R. 2006 Gold prospectivity maps of the Red Lake greenstone belt: application of GIS technology. Can. Jour. Earth Sciences 43(3): 865–893CrossRefGoogle Scholar
  16. Harris J. R., Wilkinson L., Heather K., Fumerton S., Bernier M. A., Ayer J., Dahn R. 2001 Application of GIS processing techniques for producing mineral prospectivity maps; a case study; mesothermal au in the Swayze greenstone belt, Ontario, Canada. Natural Resources Research 10(2): 91–124CrossRefGoogle Scholar
  17. Juvonen, R., 1999, Analysis of Gold and Platinum group elements in geological samples: academic dissertation, Geol. Survey Finland, Espoo, 229 pGoogle Scholar
  18. Kitco, 2006, Historical gold data and charts: (Accessed 4 December 2006)Google Scholar
  19. Kontas, E., Niskavaara, H., and Virtasalo, J., 1990, Gold, palladium and tellurium in South African, Chinese, and Japanese geological reference samples: Geostandards Newsletter 14, no. 3, p. 477–478CrossRefGoogle Scholar
  20. Lehtonen, M., Airo, M. -L., Eilu, P., Hanski, E., Kortelainen, V., Lanne, E., Manninen, T., Rastas, P., Räsänen, J., and Virransalo, P., 1998, The stratigraphy, petrology and geochemistry of the Kittilä greenstone area, northern Finland. A report of the Lapland Volcanite Project. In Finnish with summary in English: Geol. Survey Finland, Rept. Invest. 140, 144 pGoogle Scholar
  21. Ministry of Trade and Industry of Finland, 2006, Map material of the Mining Register: (Accessed 4 December, 2006)Google Scholar
  22. Niskavaara, H., 1995, A comprehensive scheme of analysis for soils, sediments, humus and plant samples using inductively coupled plasma atomic emission spectrometry (ICP-AES), in Autio, S., ed., Geological Survey of Finland, Current Research 1993–1994: Geolog. Survey Finland. Spec. Paper 20, p. 167–175Google Scholar
  23. Nykänen, V. M., Groves, D. I., Ojala, V. J., and Gardoll, S., in press, Combined conceptual/empirical prospectivity mapping for orogenic gold in the Northern Fennoscandian Shield, Finland: Australian Jour. Earth Sciences, Thematic Issue on Conceptual TargetingGoogle Scholar
  24. Nykänen, V. M., and Salmirinne, H., 2003, Prospektiivisuusanalyysi kullan etsintään Keski-Lapin vihreäkivivyöhykkeessä geofysiikan ja alueellisen moreenigeokemian avulla, in Hyvönen, E., and Sandgren, E., eds., Sovelletun geofysiikan XIV neuvottelupaivat. 4. – 5.11.2003, Rovanemi. Hotelli Pohjanhovi. Abstraktikokoelma. Vuorimiesyhdistys – Bergsmannaföreningen r.y., Rovaniemi, p. B81 Abstract (In Finnish)Google Scholar
  25. Nykänen, V. M., and Salmirinne, H., 2004, Spatiaalianalyysi Au:n etsinnän työkaluna, in Lahti, M., ed., Laivasymposio. 2. - 3.2.2004. Geologian uudet haasteet. Abstraktikokoelma. Vuorimiesyhdistys – Bergsmannaföreningen r.y., Espoo, p. B82, Abstract (In Finnish)Google Scholar
  26. Nykänen, V. M., and Salmirinne, H., 2007, Prospectivity analysis of gold using regional geophysical and geochemical data from the Central Lapland Greenstone Belt, Finland, in Nurmi, P., and Ojala, J., eds., Gold in the Central Lapland Greenstone Belt, Finland: Geol. Survey of Finland, Spec. Paper 44, p. 235–253Google Scholar
  27. Paganelli F., Richards J. P., Grunsky E. C. 2002 Integration of structural, gravity, and magnetic data using the weights of evidence method as a tool for kimberlite exploration in the Buffalo Head Hills, Northern Central Alberta, Canada. Natural Resources Research 11(3): 219–236CrossRefGoogle Scholar
  28. Raines G. L., Mihalasky M. J. 2002 A reconnaissance method for delineation of tracts for regional-scale mineral-resource assessment based on geologic-map data. Natural Resources Research 11(4): 241–248CrossRefGoogle Scholar
  29. Reddy, R. K. T., Agterberg, F. P., and Bonham-Carter G. F., 1990, Application of GIS-based logistic models to base-metal potential mapping in Snow Lake area, Manitoba: Proc. Can. Conf. on GIS, p. 607–618Google Scholar
  30. Robinson G. R., Kapo K. E., Raines G. L. 2004 A GIS analysis to evaluate areas suitable for crushed stone aggregate quarries in New England, USA. Natural Resources Research 13(3): 143–159CrossRefGoogle Scholar
  31. Sahoo N. R., Pandalai H. S. 1999 Integration of sparse geologic information in gold targeting using logistic regression analysis in the Hutti-Maski schist belt, Raichur, Karnataka, India – a case study. Natural Resources Research 8(3): 233–250CrossRefGoogle Scholar
  32. Taylor S. R., McLennan S. M. 1985 The continental crust: its composition and evolution. Blackwell, Oxford, p 312Google Scholar
  33. Venkataraman G., Babu Madhavan B., Ratha D. S., Antony J. P., Goyal R. S., Banglani S., Sinha Roy S. 2000 Spatial modelling for base-metal mineral exploration through integration of geological data sets. Natural Resources Research 9(1):27–42CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geology 2007

Authors and Affiliations

  1. 1.Bedrock and Mineral resourcesGeological Survey of FinlandRovaniemiFinland

Personalised recommendations