Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents

Abstract

The surface–chemically modified superparamagnetic iron oxide nanoparticles are broadly investigated as magnetic resonance imaging contrast agents based on their unique characteristics such as high magnetization values, diameter from 4 to 100 nm, and narrow distribution of particle size. However, naked nanoparticles might be easily oxidized by the air leading to loss of dispersibility and magnetization. Therefore, suitable surface coating strategies were developed to increase the stability of magnetic iron oxide contrast agents in the physiological conditions. In addition, the polymer-coated agents possess an improved biocompatibility in comparison with conventional agents. This review discusses important aspects of newly developed magnetic contrast agents such as chemical synthesis strategies, physical parameters, relaxivity parameters, the effect of various coatings, and emerging applications. Disadvantages associated with commercially available gadolinium contrast agents are considered, and the advantages of potential applications of iron oxide alternatives to traditional agents are presented. Finally, perspectives of the future developments, applications, and concerns of the magnetic nanoparticles are also included.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Abbate V, Hider R (2017) Iron in biology. Metallomics 9:1467–1469. https://doi.org/10.1039/C7MT90039B

    Article  Google Scholar 

  2. Akbar A, Riaz S, Ashraf R, Naseem S (2015) Magnetic and magnetization properties of iron oxide thin films by microwave assisted sol–gel route. J Sol-Gel Sci Technol 74:320–328. https://doi.org/10.1007/s10971-014-3528-9

    CAS  Article  Google Scholar 

  3. Arimoto R, Balsam W, Schloesslin C (2002) Visible spectroscopy of aerosol particles collected on filters: iron-oxide minerals. Atmos Environ 36:89–96. https://doi.org/10.1016/S1352-2310(01)00465-4

    CAS  Article  Google Scholar 

  4. Arsalani N, Fattahi H, Laurent S, Burtea C, Elst LV, Muller RN (2012) Polyglycerol-grafted superparamagnetic iron oxide nanoparticles: highly efficient MRI contrast agent for liver and kidney imaging and potential scaffold for cellular and molecular imaging. Contrast Media Mol Imaging 7:185–194. https://doi.org/10.1002/cmmi.479

    CAS  Article  Google Scholar 

  5. Bar-Shir A, Avram L, Yariv-Shoushan S, Anaby D, Cohen S, Segev-Amzaleg N, Frenkel D, Sadan O, Offen D, Cohen Y (2014) Alginate-coated magnetic nanoparticles for noninvasive MRI of extracellular calcium. NMR Biomed 27:774–783. https://doi.org/10.1002/nbm.3117

    CAS  Article  Google Scholar 

  6. Basly B, Felder-Flesch D, Perriat P, Billotey C, Taleb J, Pourroy G, Begin-Colin S (2010) Dendronized iron oxide nanoparticles as contrast agents for MRI. Chem Commun 46:985–987. https://doi.org/10.1039/B920348F

    CAS  Article  Google Scholar 

  7. Basly B, Popa G, Fleutot S, Pichon BP, Garofalo A, Ghobril C, Billotey C, Berniard A, Bonazza P, Martinez H, Felder-Flesch D, Begin-Colin S (2013) Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents. Dalton Trans 42:2146–2157. https://doi.org/10.1039/C2DT31788E

    CAS  Article  Google Scholar 

  8. Bautista MC, Bomati-Miguel O, Zhao X, Morales MP, Gonzalez-Carreno T, Pérez de Alejo R, Ruiz-Cabello J, Veintemillas-Verdaguer S (2004) Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology 15:154–159. https://doi.org/10.1088/0957-4484/15/4/008

    CAS  Article  Google Scholar 

  9. Bautista MC, Bomati-Miguel O, del Puerto MM, Serna CJ, Veintemillas-Verdaguer S (2005) Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J Magn Magn Mater 293:20–27. https://doi.org/10.1016/j.jmmm.2005.01.038

    CAS  Article  Google Scholar 

  10. Beg MS, Mohapatra J, Pradhan L, Patkar D, Bahadur D (2017) Porous Fe3O4-SiO2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. J Magn Magn Mater 428:340–347. https://doi.org/10.1016/j.jmmm.2016.12.079

    CAS  Article  Google Scholar 

  11. Behzadi AH, Zhao Y, Farooq Z, Prince MR (2017) Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology 286:471–482. https://doi.org/10.1148/radiol.2017162740

    Article  Google Scholar 

  12. Berger F, Kubik-Huch RA, Niemann T, Schmid HR, Poetzsch M, Froehlich JM, Beer JH, Kraemer T (2018) Gadolinium distribution in cerebrospinal fluid after administration of a gadolinium-based MR contrast agent in humans. Radiology 288:703–709. https://doi.org/10.1148/radiol.2018171829

    Article  Google Scholar 

  13. Blahut J, Bernášek K, Gálisová A, Herynek V, Císařová I, Kotek J, Lang J, Matějková S, Hermann P (2017) Paramagnetic 19F relaxation enhancement in nickel (II) complexes of N-trifluoroethyl cyclam derivatives and cell labeling for 19F MRI. Inorg Chem 56:13337–11348. https://doi.org/10.1021/acs.inorgchem.7b02119

    CAS  Article  Google Scholar 

  14. Blumfield E, Moore MM, Drake MK, Goodman TR, Lewis KN, Meyer LT, Ngo TD, Sammet C, Stanescu AL, Swenson DW, Slovis TL, Iyer RS (2017) Survey of gadolinium-based contrast agent utilization among the members of the Society for Pediatric Radiology: a Quality and Safety Committee report. Pediatr Radiol 47:665–673. https://doi.org/10.1007/s00247-017-3807-z

    Article  Google Scholar 

  15. Bonnet CS, Fries PH, Crouzy S, Delangle P (2010) Outer-sphere investigation of MRI relaxation contrast agents. Example of a cyclodecapeptide gadolinium complex with second-sphere water. J Phys Chem 114:8770–8781. https://doi.org/10.1021/jp101443v

    CAS  Article  Google Scholar 

  16. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2:23–30. https://doi.org/10.1038/asiamat.2010.6

    Article  Google Scholar 

  17. Bulte JW, de Jonge MW, Kamman RL, Go KG, Zuiderveen F, Blaauw B, Oosterbaan JA, Hauw T, de Leij L (1992) Dextran-magnetite particles: contrast-enhanced MRI of blood–brain barrier disruption in a rat model. Magn Reson Med 23:215–223. https://doi.org/10.1002/mrm.1910230203

    CAS  Article  Google Scholar 

  18. Bulte JWM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147. https://doi.org/10.1038/nbt1201-1141

    CAS  Article  Google Scholar 

  19. Cai H, Li K, Li J, Wen S, Chen Q, Shen M, Zheng L, Zhang G, Shi X (2015) Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for targeted dual mode CT/MR imaging of tumors. Small 11:4584–4593. https://doi.org/10.1002/smll.201500856

    CAS  Article  Google Scholar 

  20. Cao Y, Liu M, Zhang K, Zu G, Kuang Y, Tong X, Xiong D, Pei R (2016a) Poly (glycerol) used for constructing mixed polymeric micelles as T1 MRI contrast agent for tumor-targeted imaging. Biomacromolecules 18:150–158. https://doi.org/10.1021/acs.biomac.6b01437

    CAS  Article  Google Scholar 

  21. Cao Y, Liu M, Zhang K, Dong J, Zu G, Chen Y, Zhang T, Xiong D, Pei R (2016b) Preparation of linear poly (glycerol) as a T 1 contrast agent for tumor-targeted magnetic resonance imaging. J Mater Chem 4:6716–6725. https://doi.org/10.1039/C6TB01514J

    CAS  Article  Google Scholar 

  22. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523. https://doi.org/10.1039/B510982P

    CAS  Article  Google Scholar 

  23. Chang Y, Liu N, Chen L, Meng X, Liu Y, Li Y, Wang J (2012a) Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. J Mater Chem 22:9594–9601. https://doi.org/10.1039/C2JM16792A

    CAS  Article  Google Scholar 

  24. Chang Y, Liu N, Chen L, Meng X, Liu Y, Li Y, Wang J (2012b) Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. J. Mater. Chem. 22:9594–9601. https://doi.org/10.1039/C2JM16792A

    CAS  Article  Google Scholar 

  25. Chen TJ, Cheng TH, Chen CY, Hsu SC, Cheng TL, Liu GC, Wang YM (2009) Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem 14:253–260. https://doi.org/10.1007/s00775-008-0445-9

    CAS  Article  Google Scholar 

  26. Chen YJ, Tao J, Xiong F, Zhu JB, Gu N, Geng KK (2010) Characterization and in vitro cellular uptake of PEG coated iron oxide nanoparticles as MRI contrast agent. Pharmazie 65:481–486

    CAS  Google Scholar 

  27. Chen W, Lu F, Chen CCV, Mo KC, Hung Y, Guo ZX, Lin C-H, Lin M-H, Lin Y-H, Chang C, Mou C-Y (2013) Manganese-enhanced MRI of rat brain based on slow cerebral delivery of manganese (II) with silica-encapsulated MnxFe1–xO nanoparticles. NMR Biomed 26:1176–1185. https://doi.org/10.1002/nbm.2932

    CAS  Article  Google Scholar 

  28. Cheng C, Xu F, Gu H (2011) Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J Chem 35:1072–1079. https://doi.org/10.1039/C0NJ00986E

    CAS  Article  Google Scholar 

  29. Cheng Z, Dai Y, Kang X, Li C, Huang S, Lian H, Hou Z, Ma P, Lin J (2014) Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials 35:6359–6368. https://doi.org/10.1016/j.biomaterials.2014.04.029

    CAS  Article  Google Scholar 

  30. Cheng W, Xu X, Wu F, Li J (2016) Synthesis of cavity-containing iron oxide nanoparticles by hydrothermal treatment of colloidal dispersion. Mater Lett 164:210–212. https://doi.org/10.1016/j.matlet.2015.10.170

    CAS  Article  Google Scholar 

  31. Clauson RM, Chen M, Scheetz LM, Berg B, Chertok B (2018) Size-controlled iron oxide nanoplatforms with lipidoid-stabilized shells for efficient magnetic resonance imaging-trackable lymph node targeting and high-capacity biomolecule display. ACS Appl Mater Interfaces 8:20281–20295. https://doi.org/10.1021/acsami.8b02830

    CAS  Article  Google Scholar 

  32. Coe CL, Lubach GR, Kling P, Georgieff M, Rao R, Connor J (2015) Iron biology is key to understanding how inflammation, stress and obesity affect maternal and child health, Brain, Behavior, and. Immunity. 49:e34. https://doi.org/10.1016/j.bbi.2015.06.132

    Article  Google Scholar 

  33. Cui X, Antonietti M, Yu SH (2006) Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small 2:756–759. https://doi.org/10.1002/smll.200600047

    CAS  Article  Google Scholar 

  34. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Delivery Rev 138:302–325. https://doi.org/10.1016/j.addr.2019.01.005

    CAS  Article  Google Scholar 

  35. Dai F, Du M, Liu Y, Liu G, Liu Q, Zhang X (2014a) Folic acid-conjugated glucose and dextran coated iron oxide nanoparticles as MRI contrast agents for diagnosis and treatment response of rheumatoid arthritis. J Mater Chem 2:2240–2247. https://doi.org/10.1039/C3TB21732A

    CAS  Article  Google Scholar 

  36. Dai L, Liu Y, Wang Z, Guo F, Shi D, Zhang B (2014b) One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement. Mater Sci Eng 41:161–167. https://doi.org/10.1016/j.msec.2014.04.041

    CAS  Article  Google Scholar 

  37. Darbandi M, Laurent S, Busch M, Li Z-A, Yuan Y, Krüger M, Farle M, Winterer M, Elst LV, Muller RN, Wende H (2013) Blocked-micropores, surface functionalized, bio-compatible and silica-coated iron oxide nanocomposites as advanced MRI contrast agent. J Nanopart Res 15:1664–1669. https://doi.org/10.1007/s11051-013-1664-8

    CAS  Article  Google Scholar 

  38. Dekkers IA, Roos R, van der Molen AJ (2018) Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European Medicines Agency. Eur Radiol 28:1579–1584. https://doi.org/10.1007/s00330-017-5065-8

    Article  Google Scholar 

  39. El-Boubbou K (2018) Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine 13:929–952. https://doi.org/10.2217/nnm-2017-0320

    CAS  Article  Google Scholar 

  40. Fakayode OJ, Songca SP, Oluwafemi OS (2018) Neutral red separation property of ultrasmall-gluconic acid capped superparamagnetic iron oxide nanoclusters coprecipitated with goethite and hematite. Sep Purif Technol 192:475–482. https://doi.org/10.1016/j.seppur.2017.09.050

    CAS  Article  Google Scholar 

  41. Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ (2017) Gadolinium-based contrast agents: a comprehensive risk assessment. J Magn Reson Imaging 46:338–353. https://doi.org/10.1002/jmri.25625

    Article  Google Scholar 

  42. Gao GH, Lee JW, Nguyen MK, Im GH, Yang J, Heo H, Jeon P, Park TG, Lee JH, Lee DS (2011) pH-responsive polymeric micelle based on PEG-poly (β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. J Controlled Release 155:11–17. https://doi.org/10.1016/j.jconrel.2010.09.012

    CAS  Article  Google Scholar 

  43. Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol−gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts. Chem Mater 13:999–1007. https://doi.org/10.1021/cm0007611

    CAS  Article  Google Scholar 

  44. Ge S, Shi X, Sun K, Li C, Uher C, Baker JR, Horr MMB, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599. https://doi.org/10.1021/jp902953t

    CAS  Article  Google Scholar 

  45. Gómez-Vallejo V, Puigivila M, Plaza-García S, Szczupak B, Piñol R, Murillo JL, Sorribas V, Lou G, Veintemillas S, Ramos-Cabrer P, Llop J, Millán A (2018) PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale 10:14153–14164. https://doi.org/10.1039/C8NR03084G

    Article  Google Scholar 

  46. Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ (2015) Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol 5:246–255. https://doi.org/10.1016/j.jceh.2015.08.001

    Article  Google Scholar 

  47. Gyergyek S, Makovec D, Jagodič M, Drofenik M, Schenk K, Jordan O, Kovač J, Dražič G, Hofmann H (2017) Hydrothermal growth of iron oxide NPs with a uniform size distribution for magnetically induced hyperthermia: structural, colloidal and magnetic properties. J Alloys Compd 694:261–271. https://doi.org/10.1016/j.jallcom.2016.09.238

    CAS  Article  Google Scholar 

  48. Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh NTK (2016) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8:3278–3287. https://doi.org/10.1039/C5NR03867G

    CAS  Article  Google Scholar 

  49. Hajela S, Botta M, Giraudo S, Xu J, Raymond KN, Aime S (2000) A tris-hydroxymethyl-substituted derivative of Gd-TREN-Me-3, 2-HOPO: an MRI relaxation agent with improved efficiency. J Am Chem Soc 122:11228–11129. https://doi.org/10.1021/ja994315u

    CAS  Article  Google Scholar 

  50. Han Y, Qian Y, Zhou X, Hu H, Liu X, Zhou Z, Tang J, Shen Y (2016) Facile synthesis of zwitterionic polyglycerol dendrimers with a β-cyclodextrin core as MRI contrast agent carriers. Polym Chem 7:6354–6362. https://doi.org/10.1039/C6PY01404F

    CAS  Article  Google Scholar 

  51. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742. https://doi.org/10.1002/adma.201000260

    CAS  Article  Google Scholar 

  52. Haw CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int 36:1417–1422. https://doi.org/10.1016/j.ceramint.2010.02.005

    CAS  Article  Google Scholar 

  53. Hedayati M, Abubaker-Sharif B, Khattab M, Razavi A, Mohammed I, Nejad A, Wabler M, Zhou H, Mihalic J, Gruettner C, de Weese T (2018) An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles. Int J Hyperth 34:373–381. https://doi.org/10.1080/02656736.2017.1354403

    CAS  Article  Google Scholar 

  54. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64. https://doi.org/10.1002/nbm.683

    CAS  Article  Google Scholar 

  55. Hermann P, Kotek J, Kubíček V, Lukeš I (2008) Gadolinium (III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans 23:3027–3047. https://doi.org/10.1039/B719704G

    Article  Google Scholar 

  56. Hillman AL, Schwartz JS (1985) The adoption and diffusion of CT and MRI in the United States: a comparative analysis. Med Care 1:1283–1294 https://www.jstor.org/stable/3765051

    Article  Google Scholar 

  57. Hong RY, Feng B, Chen LL, Liu GH, Li HZ, Zheng Y, Wei DG (2008) Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J 42:290–300. https://doi.org/10.1016/j.bej.2008.07.009

    CAS  Article  Google Scholar 

  58. Hu F, Jia Q, Li Y, Gao M (2011) Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1-and T2-weighted magnetic resonance imaging. Nanotechnology 22:245604. https://doi.org/10.1088/0957-4484/22/24/245604

    CAS  Article  Google Scholar 

  59. Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4:7151–7160. https://doi.org/10.1021/nn101643u

    CAS  Article  Google Scholar 

  60. Hurley KR, Ring HL, Etheridge M, Zhang J, Gao Z, Shao Q, Klein ND, Szlag VM, Chung C, Reineke TM, Garwood M, Bischof JC, Haynes C (2016) Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. Mol Pharmaceutics 13:2172–2183. https://doi.org/10.1021/acs.molpharmaceut.5b00866

    CAS  Article  Google Scholar 

  61. Hussain NHI, Mustafa MK, Asman S (2018) Synthesis of PANI/iron (II, III) oxide hybrid nanocomposites using sol-gel method. J Sci Technol 10:1–4 https://doi.org/10.0.120.160/jst.2018.10.01.001

    Article  Google Scholar 

  62. Iqbal MZ, Ma X, Chen T, Zhang LE, Ren W, Xiang L, Wu A (2015) Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T1 magnetic resonance imaging (MRI). J Mater Chem B 3:5172–5181. https://doi.org/10.1039/C5TB00300H

    CAS  Article  Google Scholar 

  63. Jang H, Lee C, Nam GE, Quan B, Choi HJ, Yoo JS, Piao Y (2016) In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles. J Nanopart Res 18:41–45. https://doi.org/10.1007/s11051-016-3353-x

    CAS  Article  Google Scholar 

  64. Juang JH, Wang JJ, Shen CR, Kuo CH, Chien YW, Kuo HY, Chien Y-W, Kuo H-Y, Tsai Z-T, Yen T-C (2010) Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles. Transplant Proc 42:2104–2108. https://doi.org/10.1016/j.transproceed.2010.05.103

    CAS  Article  Google Scholar 

  65. Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharmaceutics 496:191–218. https://doi.org/10.1016/j.ijpharm.2015.10.058

    CAS  Article  Google Scholar 

  66. Kaur G, Dogra V, Kumar R, Kumar S, Singh K (2018) Fabrication of iron oxide nanocolloids using metallosurfactant-based microemulsions: antioxidant activity, cellular, and genotoxicity toward Vitis vinifera. J Biomol Struct Dyn 37:892–909. https://doi.org/10.1080/07391102.2018.1442251

    CAS  Article  Google Scholar 

  67. Kielar F, Cassino C, Leone L, Tei L, Botta M (2018) Macrocyclic trinuclear gadolinium (iii) complexes: the influence of the linker flexibility on the relaxometric properties. New J Chem 42:7984–7992. https://doi.org/10.1039/C7NJ04696K

    CAS  Article  Google Scholar 

  68. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36. https://doi.org/10.1016/S0304-8853(00)01224-5

    CAS  Article  Google Scholar 

  69. Kim EH, Ahn Y, Lee HS (2007) Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J Alloys Compd 434:633–636. https://doi.org/10.1016/j.jallcom.2006.08.311

    CAS  Article  Google Scholar 

  70. Kumagai M, Imai Y, Nakamura T, Yamasaki Y, Sekino M, Ueno S, Hanaoka K, Kikuchi K, Nagano T, Kaneko E, Shimokado K, Kataoka K (2007) Iron hydroxide nanoparticles coated with poly (ethylene glycol)-poly (aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloids Surf B 56:174–181. https://doi.org/10.1016/j.colsurfb.2006.12.019

    CAS  Article  Google Scholar 

  71. Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-Colin S, Felder-Flesch D (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573. https://doi.org/10.1016/j.biomaterials.2011.07.026

    CAS  Article  Google Scholar 

  72. Lassoued A, Dkhil B, Gadri A, Ammar S (2017) Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results phys 7:3007–3015. https://doi.org/10.1016/j.rinp.2017.07.066

    Article  Google Scholar 

  73. Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A (2018) Synthesis, photoluminescence and magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Phys E 101:212–219. https://doi.org/10.1016/j.physe.2018.04.009

    CAS  Article  Google Scholar 

  74. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. https://doi.org/10.1021/cr068445e

    CAS  Article  Google Scholar 

  75. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589. https://doi.org/10.1039/C1CS15248C

    CAS  Article  Google Scholar 

  76. Lee H, Shao H, Huang Y, Kwak B (2005) Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan. IEEE Trans Magn 41:4102–4104. https://doi.org/10.1109/TMAG.2005.855338

    CAS  Article  Google Scholar 

  77. Lee HY, Lee SH, Xu C, Xie J, Lee JH, Wu B, Koh AL, Wang X, Sinclair R, Wang SX, Nishimura DG, Biswal S, Sun S, Cho SH, Chen X (2008) Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 19:165101. https://doi.org/10.1088/0957-4484/19/16/165101

    CAS  Article  Google Scholar 

  78. Li J, Shi X, Shen M (2014) Hydrothermal synthesis and functionalization of iron oxide nanoparticles for MR imaging applications. Part Part Syst Charact 31:1223–1237. https://doi.org/10.1002/ppsc.201400087

    CAS  Article  Google Scholar 

  79. Li D, Li SJ, Zhang Y, Jiang JJ, Gong WJ, Wang JH, Zhang ZD (2015) Monodisperse water-soluble-Fe2O3/polyvinylpyrrolidone nanoparticles for a magnetic resonance imaging contrast agent. Mater Res Innov 19:58–62. https://doi.org/10.1179/1432891715Z.0000000001428

    CAS  Article  Google Scholar 

  80. Liao Z, Wang H, Lv R, Zhao P, Sun X, Wang S, Su W, Niu R, Chang J (2011) Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Langmuir 27:3100–3105. https://doi.org/10.1021/la1050157

    CAS  Article  Google Scholar 

  81. Lin S, Lin K, Lu D, Liu Z (2017) Preparation of uniform magnetic iron oxide nanoparticles by co-precipitation in a helical module microchannel reactor. J Environ Chem Eng 5:303–309. https://doi.org/10.1016/j.jece.2016.12.011

    CAS  Article  Google Scholar 

  82. Liu G, Sobering G, Duyn J, Moonen CT (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768. https://doi.org/10.1002/mrm.1910300617

    CAS  Article  Google Scholar 

  83. Liu DF, Qian C, An YL, Chang D, Ju SH, Teng GJ (2014) Magnetic resonance imaging of post-ischemic blood–brain barrier damage with PEGylated iron oxide nanoparticles. Nanoscale 6:15161–15167. https://doi.org/10.1039/C4NR03942D

    CAS  Article  Google Scholar 

  84. Liu J, Xu J, Zhou J, Zhang Y, Guo D, Wang Z (2017) Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. Int J Nanomed 12:1113–1126. https://doi.org/10.2147/IJN.S123228

    CAS  Article  Google Scholar 

  85. Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, Lee JM, Leiner T, Li K-C, Nikolaou K, Prince MR, Schild HH, Weinreb JC, Yoshikawa K, Pietsch H (2016) 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 33:1–28. https://doi.org/10.1007/s12325-015-0275-4

    Article  Google Scholar 

  86. López-Ramón MV, Álvarez MA, Moreno-Castilla C, Fontecha-Cámara MA, Yebra-Rodríguez Á, Bailón-García E (2018) Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. J Colloid Interface Sci 511:193–202. https://doi.org/10.1016/j.jcis.2017.09.117

    CAS  Article  Google Scholar 

  87. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Lett 2:183–186. https://doi.org/10.1021/nl015681q

    CAS  Article  Google Scholar 

  88. Lunvongsa S, Oshima M, Motomizu S (2006) Determination of total and dissolved amount of iron in water samples using catalytic spectrophotometric flow injection analysis. Talanta 68:969–973. https://doi.org/10.1016/j.talanta.2005.06.067

    CAS  Article  Google Scholar 

  89. Luong D, Sau S, Kesharwani P, Iyer AK (2017) Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules 18:1197–1209. https://doi.org/10.1021/acs.biomac.6b01885

    CAS  Article  Google Scholar 

  90. Lutz JF, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R (2006) One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7:3132–3138. https://doi.org/10.1021/bm0607527

    CAS  Article  Google Scholar 

  91. Ma HL, Qi XR, Maitani Y, Nagai T (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333:177–186. https://doi.org/10.1021/bm0607527

    CAS  Article  Google Scholar 

  92. Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T (2008) Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 354:217–226. https://doi.org/10.1016/j.ijpharm.2007.11.036

    CAS  Article  Google Scholar 

  93. Maghsodi A, Adlnasab L, Shabanian M, Javanbakht M (2018) Optimization of effective parameters in the synthesis of nanopore anodic aluminum oxide membrane and arsenic removal by prepared magnetic iron oxide nanoparicles in anodic aluminum oxide membrane via ultrasonic-hydrothermal method. Ultrason Sonochem 48:441–452. https://doi.org/10.1016/j.ultsonch.2018.07.003

    CAS  Article  Google Scholar 

  94. Mahmed N, Heczko O, Lancok A, Hannula SP (2014) The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere. J Magn Magn Mater 353:15–22. https://doi.org/10.1016/j.jmmm.2013.10.012

    CAS  Article  Google Scholar 

  95. Mallakpour S, Madani M (2015) A review of current coupling agents for modification of metal oxide nanoparticles. Prog Org Coat 86:194–207. https://doi.org/10.1016/j.porgcoat.2015.05.023

    CAS  Article  Google Scholar 

  96. Mansfield P, Glover P, Bowtell R (1994) Active acoustic screening: design principles for quiet gradient coils in MRI. Meas Sci Technol 5:1021. https://doi.org/10.1088/0957-0233/5/8/026

    Article  Google Scholar 

  97. Masoudi A, Hosseini HRM, Shokrgozar MA, Ahmadi R, Oghabian MA (2012) The effect of poly (ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int J Pharm 433:129–141. https://doi.org/10.1016/j.ijpharm.2012.04.080

    CAS  Article  Google Scholar 

  98. Mogharabi-Manzari M, Amini M, Abdollahi M, Khoobi M, Bagherzadeh G, Faramarzi MA (2018a) Co-immobilization of Laccase and TEMPO in the Compartments of Mesoporous Silica for a Green and One-Pot Cascade Synthesis of Coumarins by Knoevenagel Condensation. ChemCatChem 10:1542–1546. https://doi.org/10.1002/cctc.201701527

    CAS  Article  Google Scholar 

  99. Mogharabi-Manzari M, Kiani M, Aryanejad S, Imanparast S, Amini M, Faramarzi MA (2018b) A magnetic heterogeneous biocatalyst composed of immobilized laccase and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) for green one-pot cascade synthesis of 2-substituted benzimidazole and benzoxazole derivatives under mild reaction conditions. Adv Syn Catal 360:3563–3571. https://doi.org/10.1002/adsc.201800459

    CAS  Article  Google Scholar 

  100. Mogharabi-Manzari M, Ghahremani MH, Sedaghat T, Shayan F, Faramarzi MA (2019a) A laccase heterogeneous magnetic fibrous silica-based biocatalyst for green and one-pot cascade synthesis of chromene derivatives. Eur J Org Chem 2019:1741–1747. https://doi.org/10.1002/ejoc.201801784

    CAS  Article  Google Scholar 

  101. Mogharabi-Manzari M, Heydari M, Sadeghian-Abadi S, Yousefi-Mokri M, Faramarzi MA (2019b) Enzymatic dimerization of phenylacetylene by laccase immobilized on magnetic nanoparticles via click chemistry. Biocatal Biotransform 37:455–465. https://doi.org/10.1080/10242422.2019.1611788

    CAS  Article  Google Scholar 

  102. Morales MP, Bomati-Miguel O, de Alejo RP, Ruiz-Cabello J, Veintemillas-Verdaguer S, O’Grady K (2003) Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater 266:102–109. https://doi.org/10.1016/S0304-8853(03)00461-X

    CAS  Article  Google Scholar 

  103. Moser FG, Watterson CT, Weiss S, Austin M, Mirocha J, Prasad R, Wang J (2018) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: comparison between gadobutrol and linear gadolinium-based contrast agents. Am J Neuroradiol 39:421–426. https://doi.org/10.3174/ajnr.A5538

    CAS  Article  Google Scholar 

  104. Mukh-Qasem RA, Gedanken A (2005) Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci 284:489–494. https://doi.org/10.1016/j.jcis.2004.10.073

    CAS  Article  Google Scholar 

  105. Nadeem M, Ahmad M, Akhtar MS, Shaari A, Riaz S, Naseem S, Masood M, Saeed MA (2016) Magnetic properties of polyvinyl alcohol and doxorubicine loaded iron oxide nanoparticles for anticancer drug delivery applications. Plos One 11:e0158084. https://doi.org/10.1371/journal.pone.0158084

    CAS  Article  Google Scholar 

  106. Naha PC, Zaki AA, Hecht E, Chorny M, Chhour P, Blankemeyer E, Yates DM, Witschey WRT, Litt HI, Tsourkas A, Cormode DP (2014) Dextran coated bismuth–iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. J Mater Chem B 2:8239–8248. https://doi.org/10.1039/C4TB01159G

    CAS  Article  Google Scholar 

  107. Najafian N, Shanehsazzadeh S, Hajesmaeelzadeh F, Lahooti A, Gruettner C, Oghabian MA (2015) Effect of functional group and surface charge of PEGand dextran-coated USPIO as a contrast agentin MRI on relaxivity constant. Appl Magn Reson 46:685–692. https://doi.org/10.1007/s00723-015-0667-2

    CAS  Article  Google Scholar 

  108. Nan A, Suciu M, Ardelean I, Şenilă M, Turcu R (2020) Characterization of the nuclear magnetic resonance relaxivity of gadolinium functionalized magnetic nanoparticles. Anal Lett. https://doi.org/10.1080/00032719.2020.1731522

  109. Naseroleslami M, Parivar K, Khoei S, Aboutaleb N (2016) Magnetic resonance imaging of human-derived amniotic membrane stem cells using PEGylated superparamagnetic iron oxide nanoparticles. Cell J 18:332–339. https://doi.org/10.22074/cellj.2016.4560

    Article  Google Scholar 

  110. Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wöhrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57:74–81. https://doi.org/10.1002/mrm.21104

    CAS  Article  Google Scholar 

  111. Nkansah MK, Thakral D, Shapiro EM (2011) Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking. Magn Reson Med 65:1776–1785. https://doi.org/10.1002/mrm.22765

    CAS  Article  Google Scholar 

  112. Nordmeyer D, Stumpf P, Gröger D, Hofmann A, Enders S, Riese SB, Dernedde J, Taupitz M, Rauch U, Haag R, Rühl E, Graf C (2014) Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents. Nanoscale 6:9646–9654. https://doi.org/10.1039/C3NR04793H

    CAS  Article  Google Scholar 

  113. Ozel F, Kockar H, Karaagac O (2015) Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J Supercond Novel Magn 28:823–829. https://doi.org/10.1007/s10948-014-2707-9

    CAS  Article  Google Scholar 

  114. Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hyeon T (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew Chem 117:2932–2937. https://doi.org/10.1002/anie.200461665

    CAS  Article  Google Scholar 

  115. Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635. https://doi.org/10.1002/adma.200800004

    CAS  Article  Google Scholar 

  116. Patel D, Kell A, Simard B, Deng J, Xiang B, Lin HY, Gruwel M, Tian G (2010) Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials 31:2866–2873. https://doi.org/10.1016/j.biomaterials.2009.12.025

    CAS  Article  Google Scholar 

  117. Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J (2008) Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason Sonochem 15:257–264. https://doi.org/10.1016/j.ultsonch.2007.03.009

    CAS  Article  Google Scholar 

  118. Plachtova P, Medříková Z, Zbořil R, Tuček J, Varma RS, Maršálek B (2018) Iron and iron oxide nanoparticles synthesized using green tea extract: differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustain Chem Eng 6–7:8679–8687. https://doi.org/10.1021/acssuschemeng.8b00986

    CAS  Article  Google Scholar 

  119. Plewes DB, Kucharczyk W (2012) Physics of MRI: a primer. J Magn Reson Imaging 35:1038–1054. https://doi.org/10.1002/jmri.23642

    Article  Google Scholar 

  120. Pöselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Maßlo C, Weller H (2012a) Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T2-weighted spin-echo imaging. ACS Nano 6:1619–1624. https://doi.org/10.1021/nn204591r

    CAS  Article  Google Scholar 

  121. Pöselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Maßlo C, Weller H (2012b) Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T 2-weighted spin–echo imaging. Acs Nano 6:1619–1624. https://doi.org/10.1021/nn204591r

    CAS  Article  Google Scholar 

  122. Prince MR, Weinreb JC (2018) Notice of withdrawal: MR imaging and gadolinium: reassessing the risk of nephrogenic systemic fibrosis in patients with severe renal disease. Radiology 286:172255. https://doi.org/10.1148/radiol.2017172255

    Article  Google Scholar 

  123. Qiao Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27. https://doi.org/10.1016/j.progpolymsci.2014.08.002

    CAS  Article  Google Scholar 

  124. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6693. https://doi.org/10.1039/B902394A

    CAS  Article  Google Scholar 

  125. Rah YC, Han EJ, Park S, Rhee J, Koun S, Park HC, Choi J (2018) In vivo assay of the potential gadolinium-induced toxicity for sensory hair cells using a zebrafish animal model. J Appl Toxicol 38:1398–1404. https://doi.org/10.1002/jat.3656

    CAS  Article  Google Scholar 

  126. Ramalho J, Ramalho M, Jay M, Burke LM, Semelka RC (2016) Gadolinium toxicity and treatment. Magn Reson Imaging 34:1394–1398. https://doi.org/10.1016/j.mri.2016.09.005

    CAS  Article  Google Scholar 

  127. Raschzok N, Langer CM, Schmidt C, Lerche KH, Billecke N, Nehls K, Schlüter NB, Leder A, Rohn S, Mogl MT, Lüdemann L, Stelter L, Teichgräber UK, Neuhaus P, Sauer IM (2013) Functionalizable silica-based micron-sized iron oxide particles for cellular magnetic resonance imaging. Cell Transplant 22:1959–1970. https://doi.org/10.3727/096368912X661382

    Article  Google Scholar 

  128. Reddy AM, Kwak BK, Shim HJ, Ahn C, Lee HS, Suh YJ, Park ES (2010) In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticles using 3.0 T MRI. J Korean Med Sci 25:211–219. https://doi.org/10.3346/jkms.2010.25.2.211

    CAS  Article  Google Scholar 

  129. Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29:365–376. https://doi.org/10.1007/s10534-016-9931-7

    CAS  Article  Google Scholar 

  130. Rohani P, Banerjee S, Sharifi-Asl S, Malekzadeh M, Shahbazian-Yassar R, Billinge SJ, Swihart MT (2019) Synthesis and properties of plasmonic boron-hyperdoped silicon nanoparticles. Adv Funct Mater 29:1807788. https://doi.org/10.1002/adfm.201807788

    CAS  Article  Google Scholar 

  131. Roth HC, Schwaminger SP, Schindler M, Wagner FE, Berensmeier S (2015) Influencing factors in the Co-precipitation process of superparamagnetic iron oxide nano particles: a model based study. J Magn Magn Mater 377:81–89. https://doi.org/10.1016/j.jmmm.2014.10.074

    CAS  Article  Google Scholar 

  132. Saddik D, Troupis J, Tirman P, O'Donnell J, Howells R (2006) Prevalence and location of acetabular sublabral sulci at hip arthroscopy with retrospective MRI review. Am J Roentgenol 187:507–511. https://doi.org/10.2214/AJR.05.1465

    Article  Google Scholar 

  133. Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61:4625–4633. https://doi.org/10.1016/j.ces.2006.02.032

    CAS  Article  Google Scholar 

  134. Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RTM (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7:500–512. https://doi.org/10.1021/nn3046055

    CAS  Article  Google Scholar 

  135. Sanjai C, Kothan S, Gonil P, Saesoo S, Sajomsang W (2014) Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic iron oxide as an MRI contrast agent. Carbohydr Polym 104:231–237. https://doi.org/10.1016/j.carbpol.2014.01.012

    CAS  Article  Google Scholar 

  136. Santra S, Kaittanis C, Grimm J, Perez JM (2009) Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 5:1862–1868. https://doi.org/10.1002/smll.200900389

    CAS  Article  Google Scholar 

  137. Saraswathy A, Nazeer SS, Nimi N, Arumugam S, Shenoy SJ, Jayasree RS (2014) Synthesis and characterization of dextran stabilized superparamagnetic iron oxide nanoparticles for in vivo MR imaging of liver fibrosis. Carbohydr Polym 101:760–768. https://doi.org/10.1016/j.carbpol.2013.10.015

    CAS  Article  Google Scholar 

  138. Sato N, Kobayashi H, Hiraga A, Saga T, Togashi K, Konishi J, Brechbiel MW (2001) Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med 46:1169–1173. https://doi.org/10.1002/mrm.1314

    CAS  Article  Google Scholar 

  139. Sciancalepore C, Gualtieri AF, Scardi P, Flor A, Allia P, Tiberto P, Barrera G, Messori M, Bondioli F (2018) Structural characterization and functional correlation of Fe3O4 nanocrystals obtained using 2-ethyl-1, 3-hexanediol as innovative reactive solvent in non-hydrolytic sol-gel synthesis. Mater Chem Phys 207:337–349. https://doi.org/10.1016/j.matchemphys.2017.12.089

    CAS  Article  Google Scholar 

  140. Shen F, Poncet-Legrand C, Somers S, Slade A, Yip C, Duft AM, Winnik F, Chang PL (2003) Properties of a novel magnetized alginate for magnetic resonance imaging. Biotechnol Bioeng 83:282–292. https://doi.org/10.1002/bit.10674

    CAS  Article  Google Scholar 

  141. Shen CR, Wu ST, Tsai ZT, Wang JJ, Yen TC, Tsai JS, Shih M-F, Liu CL (2011) Characterization of quaternized chitosan-stabilized iron oxide nanoparticles as a novel potential magnetic resonance imaging contrast agent for cell tracking. Polym Int 60:945–950. https://doi.org/10.1002/pi.3059

    CAS  Article  Google Scholar 

  142. Shi X, Wang SH, Swanson SD, Ge S, Cao Z, van Antwerp ME, Landmark KJ, Baker JR (2008a) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater 20:1671–1678. https://doi.org/10.1002/adma.200702770

    CAS  Article  Google Scholar 

  143. Shi Z, Neoh KG, Kang ET, Shuter B, Wang SC, Poh C, Wang W (2008b) (Carboxymethyl) chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. ACS Appl Mater Interfaces 1:328–335. https://doi.org/10.1021/am8000538

    CAS  Article  Google Scholar 

  144. Silva MF, de Oliveira LA, Ciciliati MA, Lima MK, Ivashita FF, de Oliveira DMF, Hechenleitner AAW, Pineda EA (2017) The effects and role of polyvinylpyrrolidone on the size and phase composition of iron oxide nanoparticles prepared by a modified sol-gel method. J Nanomater 2017:1–10. https://doi.org/10.1155/2017/7939727

    CAS  Article  Google Scholar 

  145. Sodipo BK, Aziz AA (2018) One minute synthesis of amino-silane functionalized superparamagnetic iron oxide nanoparticles by sonochemical method. Ultrason Sonochem 40:837–840. https://doi.org/10.1016/j.ultsonch.2017.08.040

    CAS  Article  Google Scholar 

  146. Spandonis Y, Heese FP, Hall LD (2004) High resolution MRI relaxation measurements of water in the articular cartilage of the meniscectomized rat knee at 4.7 T. Magn Reson Imaging 22:943–951. https://doi.org/10.1016/j.mri.2004.02.010

    Article  Google Scholar 

  147. Stepanov A, Fedorenko S, Amirov R, Nizameev I, Kholin K, Voloshina A, Sapunova A, Mendes R, Rümmeli M, Gemming T, Mustafina A, Odintsov B (2018) Silica-coated iron-oxide nanoparticles doped with Gd (III) complexes as potential double contrast agents for magnetic resonance imaging at different field strengths. J Chem Sci 130:125–130. https://doi.org/10.1007/s12039-018-1527-z

    CAS  Article  Google Scholar 

  148. Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T (2001) Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater 13:2201–2209. https://doi.org/10.1021/cm010125i

    CAS  Article  Google Scholar 

  149. Sun W, Mignani S, Shen M, Shi X (2016) Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discovery Today 21:1873–1885. https://doi.org/10.1016/j.drudis.2016.06.028

    CAS  Article  Google Scholar 

  150. Suryawanshi PL, Sonawane SH, Bhanvase BA, Ashokkumar M, Pimplapure MS, Gogate PR (2018) Synthesis of iron oxide nanoparticles in a continuous flow spiral microreactor and Corning® advanced flow™ reactor. Green Proc Syn 7:1–11. https://doi.org/10.1515/gps-2016-0138

    CAS  Article  Google Scholar 

  151. Šutk A, Lagzdina S, Käämbre T, Pärna R, Kisandb V, Kleperis J, Maiorov M, Kikas A, Kuusik I, Jakovlevs D (2015) Study of the structural phase transformation of iron oxide nanoparticles from an Fe2+ ion source by precipitation under various synthesis parameters and temperatures. Mater Chem Phys 149–150:473–479. https://doi.org/10.1016/j.matchemphys.2014.10.048

    CAS  Article  Google Scholar 

  152. Takami S, Sato T, Mousavand T, Ohara S, Umetsu M, Adschiri T (2007) Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mate Lett 61:4769–4772. https://doi.org/10.1016/j.matlet.2007.03.024

    CAS  Article  Google Scholar 

  153. Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003

    CAS  Article  Google Scholar 

  154. Thapa B, Diaz-Diestra D, Beltran-Huarac J, Weiner BR, Morell G (2017) Enhanced MRI T2 relaxivity in contrast-probed anchor-free PEGylated iron oxide nanoparticles. Nanoscale Res Lett 12:312–325. https://doi.org/10.1186/s11671-017-2084-y

    CAS  Article  Google Scholar 

  155. Thomson CE, Kornegay JN, Burn RA, Drayer BP, Hadley DM, Levesque DC, Gainsburg LA, Lane SB, Sharp NJ, Wheeler SJ (1993) Magnetic resonance imaging-a general overview of principles and examples in veterinary neurodiagnosis. Vet Radiol Ultrasound 34:2–17. https://doi.org/10.1111/j.1740-8261.1993.tb01986.x

    Article  Google Scholar 

  156. Tian Q, Wang Q, Yao KX, Teng B, Zhang J, Yang S, Han Y (2014) Multifunctional polypyrrole@ Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 10:1063–1068. https://doi.org/10.1002/smll.201302042

    CAS  Article  Google Scholar 

  157. Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 12:4434–4440. https://doi.org/10.1021/nl902715v

    CAS  Article  Google Scholar 

  158. Tsai Z-T, Wang J-F, Kuo H-Y, Shen C-R, Wang J-J, Yen T-C (2010) In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: a potential MRI contrast agent useful for cell tracking. J Magn Magn Mater 322:208–213. https://doi.org/10.1016/j.jmmm.2009.08.049

    CAS  Article  Google Scholar 

  159. Wang SH, Shi X, van Antwerp M, Cao Z, Swanson SD, Bi X, Baker JR (2007) Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater 17:3043–3050. https://doi.org/10.1002/adfm.200601139

    CAS  Article  Google Scholar 

  160. Wang L, Neoh KG, Kang ET, Shuter B, Wang SC (2009) Superparamagnetic hyperbranched polyglycerol-grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: an in vitro assessment. Adv Funct Mater 19:2615–2622. https://doi.org/10.1002/adfm.200801689

    CAS  Article  Google Scholar 

  161. Wang C, Ravi S, Garapati US, Das M, Howell M, Mallela J, Alwarapan S, Mohapatra SS, Mohapatra S (2013) Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J Mater Chem B 1:4396–4405. https://doi.org/10.1039/C3TB20452A

    CAS  Article  Google Scholar 

  162. Wang YXJ, Zhu XM, Liang Q, Cheng CH, Wang W, Leung KCF (2014) In vivo chemoembolization and magnetic resonance imaging of liver tumors by using iron oxide nanoshell/doxorubicin/poly (vinyl alcohol) hybrid composites. Angew Chem 53:4812–4815. https://doi.org/10.1002/anie.201402144

    CAS  Article  Google Scholar 

  163. Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, Chen O, Chen Y, Li N, Okada S, Cordero JM (2017) Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci 114:2325–2330. https://doi.org/10.1073/pnas.1620145114

    CAS  Article  Google Scholar 

  164. Winter JD, Akens MK, Cheng HLM (2011) Quantitative MRI assessment of VX2 tumour oxygenation changes in response to hyperoxia and hypercapnia. Phys Med Biol 5:1225–1229. https://doi.org/10.1088/0031-9155/56/5/001

    Article  Google Scholar 

  165. Xiao Y, Lin ZT, Chen Y, Wang H, Deng YL, Le DE, Bin J, Li M, Liao Y, Liu Y, Bin J, Jiang G (2015) High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging. Int J Nanomed 10:1155–1172. https://doi.org/10.2147/IJN.S70022

    CAS  Article  Google Scholar 

  166. Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK (2016) MRI contrast agents: classification and application. Int J Mol Med 38:1319–1326. https://doi.org/10.3892/ijmm.2016.2744

    CAS  Article  Google Scholar 

  167. Xiong F, Hu K, Yu H, Zhou L, Song L, Zhang Y, Shan X, Liu J, Gu N (2017) A functional iron oxide nanoparticles modified with PLA-PEG-DG as tumor-targeted MRI contrast agent. Pharm Res 34:1683–1692. https://doi.org/10.1007/s11095-017-2165-8

    CAS  Article  Google Scholar 

  168. Xu S, Yang F, Zhou X, Zhuang Y, Liu B, Mu Y, Wang X, Shen H, Zhi G, Wu D (2015) Uniform PEGylated PLGA microcapsules with embedded Fe3O4 nanoparticles for US/MR dual-modality imaging. ACS Appl Mater Interfaces 7:20460–20468. https://doi.org/10.1021/acsami.5b06594

    CAS  Article  Google Scholar 

  169. Xue S, Wang Y, Wang M, Zhang L, Du X, Gu H, Zhang C (2014) Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomed 9:2527–2538. https://doi.org/10.2147/IJN.S59754

    Article  Google Scholar 

  170. Yadav RS, Kuřitka I, Vilcakova J, Jamatia T, Machovsky M, Skoda D, Urbánek P, Masař M, Urbánek M, Kalina L, Havlica J (2020) Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason Sonochem 61:104839. https://doi.org/10.1016/j.ultsonch.2019.104839

    CAS  Article  Google Scholar 

  171. Yamada Y, Shimizu R, Kobayashi Y (2016) Iron oxide and iron carbide particles produced by the polyol method. Hyperfine Interact 237:6–11. https://doi.org/10.1007/s10751-016-1220-x

    CAS  Article  Google Scholar 

  172. Yan F, Xu H, Anker J, Kopelman R, Ross B, Rehemtulla A, Reddy R (2004) Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging. J Nanosci Nanotechnol 4:72–76. https://doi.org/10.1166/jnn.2004.074

    CAS  Article  Google Scholar 

  173. Yang QX, Wang J, Collins CM, Smith MB, Zhang X, Ugurbil K, Chen W (2004) Phantom design method for high-field MRI human systems. Magn Reson Med 52:1016–1020. https://doi.org/10.1002/mrm.20245

    Article  Google Scholar 

  174. Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7:460–468. https://doi.org/10.1002/cmmi.1473

    CAS  Article  Google Scholar 

  175. Yue-Jian C, Juan T, Fei X, Jia-Bi Z, Ning G, Yi-Hua Z, Ye D, Liang G (2010) Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev Ind Pharm 36:1235–1244. https://doi.org/10.3109/03639041003710151

    CAS  Article  Google Scholar 

  176. Zhang C, Wängler B, Morgenstern B, Zentgraf H, Eisenhut M, Untenecker H, Krüger R, Huss R, Seliger C, Semmler W, Kiessling F (2007) Silica-and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir 23:1427–1434. https://doi.org/10.1021/la061879k

    CAS  Article  Google Scholar 

  177. Zhang Y, Liu JY, Ma S, Zhang YJ, Zhao X, Zhang XD, Zhang ZD (2010) Synthesis of PVP-coated ultra-small Fe3 O4 nanoparticles as a MRI contrast agent. J Mater Sci Mater Med 21:1205–1210. https://doi.org/10.1007/s10856-009-3881-3

    CAS  Article  Google Scholar 

  178. Zheng X-C, Ren W, Zhang S, Zhong T, Duan X-C, Yin Y-F, Xu M-Q, Hao Y-L, Li Z-T, Li H, Liu M, Li Z-Y, Zhang X (2018) The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int J Nanomed 13:1495–1504

    CAS  Article  Google Scholar 

  179. Zhou C, Rong P, Zhang W, Zhou J, Zhang Q, Wang WEI, Zou B (2010) Fulvic acid coated iron oxide nanoparticles for magnetic resonance imaging contrast agent. Funct Mater Lett 3:197–200. https://doi.org/10.1142/S179360471000124X

    CAS  Article  Google Scholar 

  180. Zhou D, Sun Y, Zheng Y, Ran H, Li P, Wang Z, Wang Z (2015) Superparamagnetic PLGA–iron oxide microspheres as contrast agents for dual-imaging and the enhancement of the effects of high-intensity focused ultrasound ablation on liver tissue. RSC Adv 5:35693–35703. https://doi.org/10.1039/C5RA00880H

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mogharabi-Manzari.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salehipour, M., Rezaei, S., Mosafer, J. et al. Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents. J Nanopart Res 23, 48 (2021). https://doi.org/10.1007/s11051-021-05156-x

Download citation

Keywords

  • Polymer-coated
  • Iron oxide nanoparticles
  • Magnetic resonance image
  • Contrast agent
  • Relaxivity