Large scale hybrid magnetic ZnFe2O4/TiO2 nanocomposite with highly photocatalytic activity for water splitting

Abstract

Upscale production of hybrid magnetic ZnFe2O4/TiO2 nanocomposites (ZFTs) with various mass loading of 30–90 wt% TiO2 was synthesized to improve the water splitting and hydrogen production via photocatalytic process under visible irradiation. Physicochemical characteristics such as structure, morphology, magnetic, and photocatalytic activities were studied in details. The TEM observations confirm that ZnFe2O4 and TiO2 are strongly coupled as spherical nanoparticles around 6–8 nm. The absorption of TiO2 was shifted to the visible region and the lowest PL intensity of ZFT70 nanocomposite exhibited superior photocatalytic activity compared to the other nanocomposites. The ZFT70 photocurrent was five times higher than single TiO2 and ZnFe2O4 phases, indicating enhanced photo induced electron and hole separation. This can be considered earnest green technology process for harvesting visible light using heterostructure photocatalysts with amazing scope application, especially for hydrogen production through photo water splitting process. Seventy percent hydrogen yield was obtained at 9021 μmol/h g of ZnFe2O4/TiO2 as a promising material for producing alternative green energy.

Graphical abstract

Intelligent nanocomposite act as energy harvesting materials for hydrogen production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ahmed SN, Inam A, Haider W (2019) γ-Fe2O3 photocatalyst immobilized on a porous Ni substrate for recyclable solar photocatalysis. J Nanopart Res 21(11):238

    Google Scholar 

  2. Anderson C, Bard AJ (1997) Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J Phys Chem B 101(14):2611–2616

    CAS  Google Scholar 

  3. Cai C, Zhang Z, Liu J, Shan N, Zhang H, Dionysiou DD (2016) Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water. Appl Catal B Environ 182:456–468

    CAS  Google Scholar 

  4. Diab KR, el-Maghrabi HH, Nada AA, Youssef AM, Hamdy A, Roualdes S, Abd el-Wahab S (2018) Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. J Photochem Photobiol A Chem 365:86–93

    Google Scholar 

  5. Do Y et al (1994) The effect of WO3 on the photocatalytic activity of TiO2. J Solid State Chem 108(1):198–201

    CAS  Google Scholar 

  6. El-Maghrabi HH et al (2016) One pot environmental friendly nanocomposite synthesis of novel TiO2-nanotubes on graphene sheets as effective photocatalyst. Egypt J Pet 25(4):575–584

    Google Scholar 

  7. El-Maghrabi HH et al (2018a) Synthesis of mesoporous core-shell CdS@ TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production. J Photochem Photobiol A Chem 351:261–270

    CAS  Google Scholar 

  8. El-Maghrabi H et al (2018b) Photocorrosion resistant Ag2CO3@ Fe2O3/TiO2-NT nanocomposite for efficient visible light photocatalytic degradation activities. J Hazard Mater 360:250–256

    CAS  Google Scholar 

  9. Gan J, Lu X, Tong Y (2014) Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6(13):7142–7164

    CAS  Google Scholar 

  10. Gao Y, Chen B, Li H, Ma Y (2003) Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater Chem Phys 80(1):348–355

    CAS  Google Scholar 

  11. Harish K, Bhojya Naik H (2013) Solar light active ZnFe2-xAlxO4 materials for optical and photocatalytic activity: an efficient photocatalyst. Int J Sci Res 1(4):301–307

    Google Scholar 

  12. Hotchandani S, Kamat PV (1992) Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system. J Phys Chem 96(16):6834–6839

    CAS  Google Scholar 

  13. Jang JS, Li W, Oh SH, Lee JS (2006) Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chem Phys Lett 425(4–6):278–282

    CAS  Google Scholar 

  14. Jiang X, Wang Z, Zhang X, Jiang G, Peng Y, Xu S, Cao M, Dai X, Liu Z, Ma J (2019) Enhanced photocatalytic activity of biosynthesized Au-Ag/TiO2 catalyst by removing excess anchored biomolecules. J Nanopart Res 21(10):211

    Google Scholar 

  15. Jiu J, Nogi M, Sugahara T, Suganuma K, Tsujimoto M, Isoda S (2012) Ag/TiO2 core–shell nanocables prepared with a one-step polyol process. J Nanopart Res 14(11):1241

    Google Scholar 

  16. Kawrani S, Nada AA, Bekheet MF, Boulos M, Viter R, Roualdes S, Miele P, Cornu D, Bechelany M (2020a) Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets. Chem Eng J 389:124326

    CAS  Google Scholar 

  17. Kawrani S, Boulos M, Bekheet MF, Viter R, Nada AA, Riedel W, Roualdes S, Cornu D, Bechelany M (2020b) Segregation of copper oxide on calcium copper titanate surface induced by Graphene Oxide for Water splitting applications. Appl Surf Sci 516:146051

    CAS  Google Scholar 

  18. Landi S Jr, Carneiro J, Ferdov S, Fonseca AM, Neves IC, Ferreira M, Parpot P, Soares OSGP, Pereira MFR (2017) Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites. J Photochem Photobiol A Chem 346:60–69

    CAS  Google Scholar 

  19. Lei J, Shao Q, Wang X, Wei Q, Yang L, Li H, Huang Y, Hou B (2017) ZnFe2O4/TiO2 nanocomposite films for photocathodic protection of 304 stainless steel under visible light. Mater Res Bull 95:253–260

    CAS  Google Scholar 

  20. Li Y, Wang H, Peng S (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118(34):19842–19848

    CAS  Google Scholar 

  21. McDonald KJ, Choi K-S (2011) Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem Mater 23(21):4863–4869

    CAS  Google Scholar 

  22. Meng X, Zhuang Y, Tang H, Lu C (2018) Hierarchical structured ZnFe2O4@ SiO2@ TiO2 composite for enhanced visible-light photocatalytic activity. J Alloys Compd 761:15–23

    CAS  Google Scholar 

  23. Nada AA, Nasr M, Viter R, Miele P, Roualdes S, Bechelany M (2017) Mesoporous ZnFe2O4@ TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials. J Phys Chem C 121(44):24669–24677

    CAS  Google Scholar 

  24. Nada AA, Tantawy HR, Elsayed MA, Bechelany M, Elmowafy ME (2018) Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci 78:116–125

    CAS  Google Scholar 

  25. Nada AA, Bekheet MF, Viter R, Miele P, Roualdes S, Bechelany M (2019) BN/GdxTi (1-x) O (4-x)/2 nanofibers for enhanced photocatalytic hydrogen production under visible light. Appl Catal B Environ 251:76–86

    CAS  Google Scholar 

  26. Nasr M et al (2016) Enhanced visible-light photocatalytic performance of electrospun rGO/TiO2 composite nanofibers. J Phys Chem C 121(1):261–269

    Google Scholar 

  27. Nasrallah N, Kebir M, Koudri Z, Trari M (2011) Photocatalytic reduction of Cr (VI) on the novel hetero-system CuFe2O4/CdS. J Hazard Mater 185(2–3):1398–1404

    CAS  Google Scholar 

  28. Nguyen TB, Doong R-a (2016) Fabrication of highly visible-light-responsive ZnFe 2 O 4/TiO 2 heterostructures for the enhanced photocatalytic degradation of organic dyes. RSC Adv 6(105):103428–103437

    CAS  Google Scholar 

  29. Nguyen TB, Doong R-a (2017) Heterostructured ZnFe 2 O 4/TiO 2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation. RSC Adv 7(79):50006–50016

    CAS  Google Scholar 

  30. Nguyen TB, Huang CP, Doong R-A (2019) Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci Total Environ 646:745–756

    CAS  Google Scholar 

  31. Okazaki S, Okuyama T (1983) Nb2O5 supported on TiO2. Catalytic activity for reduction of NO with NH3. Bull Chem Soc Jpn 56(7):2159–2160

    CAS  Google Scholar 

  32. Pal M, Mathews NR, Sanchez-Mora E, Pal U, Paraguay-Delgado F, Mathew X (2015) Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity. J Nanopart Res 17(7):301

    Google Scholar 

  33. Rana S, Srivastava RS, Sorensson MM, Misra RDK (2005) Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system. Mater Sci Eng B 119(2):144–151

    Google Scholar 

  34. Schlicht S, Assaud L, Hansen M, Licklederer M, Bechelany M, Perner M, Bachmann J (2016) An electrochemically functional layer of hydrogenase extract on an electrode of large and tunable specific surface area. J Mater Chem A 4(17):6487–6494

    CAS  Google Scholar 

  35. Sheikh A, Yengantiwar A, Deo M, Kelkar S, Ogale S (2013) Near-field plasmonic functionalization of light harvesting oxide–oxide heterojunctions for efficient solar photoelectrochemical water splitting: the AuNP/ZnFe2O4/ZnO system. Small 9(12):2091–2096

    CAS  Google Scholar 

  36. Shen J, Meng Y, Xin G (2011) CdS/TiO 2 nanotubes hybrid as visible light driven photocatalyst for water splitting. Rare Metals 30(1):280–283

    CAS  Google Scholar 

  37. Shen P, Lofaro JC Jr, Woerner WR, White MG, Su D, Orlov A (2013) Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method. Chem Eng J 223:200–208

    CAS  Google Scholar 

  38. Shen M, Chen S, Jia W, Fan G, Jin Y, Liang H (2016) Highly efficient and porous TiO2-coated Ag@Fe3O4@C-Au microspheres for degradation of organic pollutants. J Nanopart Res 18(12):356

    Google Scholar 

  39. Song XC, Yang E, Liu G, Zhang Y, Liu ZS, Chen HF, Wang Y (2010) Preparation and photocatalytic activity of Mo-doped WO3 nanowires. J Nanopart Res 12(8):2813–2819

    CAS  Google Scholar 

  40. Štengl V, Bakardjieva S, Murafa N, Houšková V, Lang K (2008) Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Microporous Mesoporous Mater 110(2–3):370–378

    Google Scholar 

  41. Sun S, Yang X, Zhang Y, Zhang F, Ding J, Bao J, Gao C (2012) Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Prog Nat Sci Mater Int 22(6):639–643

    Google Scholar 

  42. Uddin MT, Nicolas Y, Olivier C, Toupance T, Müller MM, Kleebe HJ, Rachut K, Ziegler J, Klein A, Jaegermann W (2013) Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations. J Phys Chem C 117(42):22098–22110

    CAS  Google Scholar 

  43. Wade J (2005) An investigation of TiO2-ZnFe2O4 nanocomposites for visible light photocatalysis

  44. Wang Q, Jiang Z, Wang Y, Chen D, Yang D (2009) Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrane templating. J Nanopart Res 11(2):375–384

    CAS  Google Scholar 

  45. Wang Y, Yu J, Xiao W, Li Q (2014) Microwave-assisted hydrothermal synthesis of graphene based Au–TiO 2 photocatalysts for efficient visible-light hydrogen production. J Mater Chem A 2(11):3847–3855

    CAS  Google Scholar 

  46. Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H 2-production activity of graphene-modified titania nanosheets. Nanoscale 3(9):3670–3678

    CAS  Google Scholar 

  47. Xin Y, Gao M, Wang Y, Ma D (2014) Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chem Eng J 242:162–169

    CAS  Google Scholar 

  48. Zhang F, Li X, Zhao Q, Zhang D (2016) Rational design of ZnFe2O4/In2O3 nanoheterostructures: efficient photocatalyst for gaseous 1, 2-dichlorobenzene degradation and mechanistic insight. ACS Sustain Chem Eng 4(9):4554–4562

    CAS  Google Scholar 

  49. Zheng XL, Dinh CT, de Arquer FPG, Zhang B, Liu M, Voznyy O, Li YY, Knight G, Hoogland S, Lu ZH, du XW, Sargent EH (2016) ZnFe2O4 leaves grown on TiO2 trees enhance photoelectrochemical water splitting. Small 12(23):3181–3188

    CAS  Google Scholar 

Download references

Acknowledgments

Acknowledges the support from the French Embassy in Egypt (Institute Français d’Egypte) and Academy of Scientific Research & Technology - Egypt (ASRT) in the frame of IMHOTEP 2018–2019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amr A. Nada.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1762 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Draz, M.A., El-Maghrabi, H.H., Soliman, F.S. et al. Large scale hybrid magnetic ZnFe2O4/TiO2 nanocomposite with highly photocatalytic activity for water splitting. J Nanopart Res 23, 10 (2021). https://doi.org/10.1007/s11051-020-05122-z

Download citation

Keywords

  • Semiconductors
  • Zinc ferrites
  • Nanocomposites
  • Titanium oxide
  • Hydrogen generation
  • Nanostructured catalysts