Acetylcholinesterase inhibitors and nanoparticles on Alzheimer’s disease: a review

Abstract

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease clinically characterized by progressive loss of memory, impairment cognitive function, and neuropsychiatric and behavior dysfunction. The molecular pathology of the disease is characterized with extracellular accumulation of amyloid β plaques and neurofibrillary tangles composed of hyperphosphorylated Tau. Even with crescent number of AD patients worldwide, the current treatment approved does not alter the course of the disease but rather controls the symptoms. In addition to this, also present poor solubility and low bioavailability. Therefore, several studies have been exploring new delivery systems to efficiently deliver those drugs and enhance biological activity. Among them, nanoparticulated systems have demonstrated great potential as a drug delivery system in neurodegenerative disease. In this review, we will reflect on the current progress of nanoparticulated systems with an overall particle size ranging from 2 up to 200 nm and potential to deliver AD drugs for AD treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alonso MJ, Couvreur P (2012) Chapter 1. historical view of the design and development of nanocarriers for overcoming biological barriers. In: nanostructured biomaterials for overcoming biological barriers. The Royal Society of Chemistry, pp 3–36

  2. Bales KR, Verina T, Dodel RC, du Y, Altstiel L, Bender M, Hyslop P, Johnstone EM, Little SP, Cummins DJ, Piccardo P, Ghetti B, Paul SM (1997) Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat Genet 17:263–264. https://doi.org/10.1038/ng1197-263

    CAS  Article  Google Scholar 

  3. Bales KR, Verina T, Cummins DJ, du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V, Ghetti B, Paul SM (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 96:15233–15238. https://doi.org/10.1073/pnas.96.26.15233

    CAS  Article  Google Scholar 

  4. Battaglia L, Gallarate M (2012) Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 9:497–508. https://doi.org/10.1517/17425247.2012.673278

    CAS  Article  Google Scholar 

  5. Baysal I, Ucar G, Gultekinoglu M, Ulubayram K, Yabanoglu-Ciftci S (2017) Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J Neural Transm 124:33–45. https://doi.org/10.1007/s00702-016-1527-4

    CAS  Article  Google Scholar 

  6. Benítez-Martínez S, Caballero-Díaz E, Valcárcel M (2016) Development of a biosensing system for tacrine based on nitrogen-doped graphene quantum dots and acetylcholinesterase. Analyst 141:2688–2695. https://doi.org/10.1039/c6an00357e

    Article  Google Scholar 

  7. Bhavna B, Shadab M, Ali M et al (2014) Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm 40:278–287. https://doi.org/10.3109/03639045.2012.758130

    CAS  Article  Google Scholar 

  8. Birks JS, Harvey RJ (2018) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001190.pub3

  9. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403. https://doi.org/10.1016/S0140-6736(06)69113-7

    CAS  Article  Google Scholar 

  10. Briggs R, Kennelly SP, O’Neill D (2016) Drug treatments in Alzheimer’s disease. Clin Med (Northfield Il) 16:247–253. https://doi.org/10.7861/clinmedicine.16-3-247

    Article  Google Scholar 

  11. Bryson HM, Benfield P (1997) Donepezil. Drugs Aging 10:234–239. https://doi.org/10.2165/00002512-199710030-00007

    CAS  Article  Google Scholar 

  12. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20:148–160. https://doi.org/10.1038/s41583-019-0132-6

    CAS  Article  Google Scholar 

  13. Cole L, Kramer PR (2016) Alzheimer’s disease. In: Human physiology. Elsevier, Biochemistry and Basic Medicine, pp 215–217

    Google Scholar 

  14. Corace G, Angeloni C, Malaguti M, Hrelia S, Stein PC, Brandl M, Gotti R, Luppi B (2014) Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J Liposome Res 24:323–335. https://doi.org/10.3109/08982104.2014.899369

    CAS  Article  Google Scholar 

  15. Craparo EF, Pitarresi G, Bondi ML et al (2008) A nanoparticulate drug-delivery system for rivastigmine: physico-chemical and in vitro biological characterization. Macromol Biosci 8:247–259. https://doi.org/10.1002/mabi.200700165

    CAS  Article  Google Scholar 

  16. Crismon ML (1994) Tacrine: first drug approved for Alzheimer’s disease. Ann Pharmacother 28:744–751. https://doi.org/10.1177/106002809402800612

    CAS  Article  Google Scholar 

  17. D’souza AA, Shegokar R (2016) Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13:1257–1275. https://doi.org/10.1080/17425247.2016.1182485

    CAS  Article  Google Scholar 

  18. Desai AK, Grossberg GT (2005) Rivastigmine for Alzheimer’s disease. Expert Rev Neurother 5:563–580. https://doi.org/10.1586/14737175.5.5.563

    CAS  Article  Google Scholar 

  19. Dinesh Raja A, Mohambed M, Joji S et al (2012) Design and evaluation of chitosan nanoparticles as novel drug carriers for the delivery of donepezil. Iran J Pharm Sci 8:155–164

    Google Scholar 

  20. Enz A, Boddeke H, Gray J, Spiegel R (1991) Pharmacologic and clinicopharmacologic properties of SDZ ENA 713, a centrally selective acetylcholinesterase inhibitor. Ann N Y Acad Sci 640:272–275. https://doi.org/10.1111/j.1749-6632.1991.tb00232.x

    CAS  Article  Google Scholar 

  21. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S (2018) Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 143:155–170. https://doi.org/10.1016/j.brainresbull.2018.10.009

    CAS  Article  Google Scholar 

  22. Eslami M, Nikkhah SJ, Hashemianzadeh SM, Sajadi SAS (2016) The compatibility of tacrine molecule with poly(n-butylcyanoacrylate) and chitosan as efficient carriers for drug delivery: a molecular dynamics study. Eur J Pharm Sci 82:79–85. https://doi.org/10.1016/j.ejps.2015.11.014

    CAS  Article  Google Scholar 

  23. Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni J, Ali J (2012) Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47:6–15. https://doi.org/10.1016/j.ejps.2012.04.013

    CAS  Article  Google Scholar 

  24. Fornaguera C, Feiner-Gracia N, Calderó G, García-Celma MJ, Solans C (2015) Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale 7:12076–12084. https://doi.org/10.1039/c5nr03474d

    CAS  Article  Google Scholar 

  25. Forsyth DR, Wilcock GK, Morgan RA, Truman CA, Ford JM, Roberts CJC (1989) Pharmacokinetics of tacrine hydrochloride in Alzheimer’s disease. Clin Pharmacol Ther 46:634–641. https://doi.org/10.1038/clpt.1989.199

    CAS  Article  Google Scholar 

  26. Fulton B, Benfield P (1996) Galanthamine. Drugs Aging 9:60–65. https://doi.org/10.2165/00002512-199609010-00006

    CAS  Article  Google Scholar 

  27. Galimberti D, Scarpini E (2012) Progress in Alzheimer’s disease. J Neurol 259:201–211. https://doi.org/10.1007/s00415-011-6145-3

    CAS  Article  Google Scholar 

  28. Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20:291–300. https://doi.org/10.3109/1061186X.2011.654121

    CAS  Article  Google Scholar 

  29. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472. https://doi.org/10.1083/jcb.201709069

    CAS  Article  Google Scholar 

  30. Hardy J, Higgins G (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science (80-) 256:184–185. https://doi.org/10.1126/science.1566067

    CAS  Article  Google Scholar 

  31. Hassani S, Laouini A, Fessi H, Charcosset C (2015) Preparation of chitosan-TPP nanoparticles using microengineered membranes - effect of parameters and encapsulation of tacrine. Colloids Surfaces A Physicochem Eng Asp 482:34–43. https://doi.org/10.1016/j.colsurfa.2015.04.006

    CAS  Article  Google Scholar 

  32. Hassanzadeh G, Fallahi Z, Khanmohammadi M, Elmizadeh H (2016) Effect of magnetic tacrine-loaded chitosan nanoparticles on spatial learning, memory, amyloid precursor protein and seladin-1 expression in the hippocampus of streptozotocin-exposed rats. Int Clin Neurosci J 3:25–31. https://doi.org/10.22037/icnj.v3i1.12358

    Article  Google Scholar 

  33. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    CAS  Article  Google Scholar 

  34. Ismail MF, Elmeshad AN, Salem NAH (2013) Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer’s disease. Int J Nanomedicine 8:393–406. https://doi.org/10.2147/IJN.S39232

    CAS  Article  Google Scholar 

  35. Jain KK (2000) Evaluation of memantine for neuroprotection in dementia. Expert Opin Investig Drugs 9:1397–1406. https://doi.org/10.1517/13543784.9.6.1397

    CAS  Article  Google Scholar 

  36. Jarvis B, Figgitt DP (2003) Memantine. Drugs Aging 20:465–476. https://doi.org/10.2165/00002512-200320060-00005

    CAS  Article  Google Scholar 

  37. Jogani VV, Shah PJ, Mishra P, Mishra AK, Misra AR (2008) Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting. Alzheimer Dis Assoc Disord 22:116–124. https://doi.org/10.1097/WAD.0b013e318157205b

    CAS  Article  Google Scholar 

  38. Joshi SA, Chavhan SS, Sawant KK (2010) Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 76:189–199. https://doi.org/10.1016/j.ejpb.2010.07.007

    CAS  Article  Google Scholar 

  39. Karimzadeh M, Rashidi L, Ganji F (2017) Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev Ind Pharm 43:628–636. https://doi.org/10.1080/03639045.2016.1275668

    CAS  Article  Google Scholar 

  40. Kawashima K, Sato A, Yoshizawa M, et al (1994) Effects of the centrally acting cholinesterase inhibitors tetrahydroaminoacridine and E2020 on the basal concentration of extracellular acetylcholine in the hippocampus of freely moving rats. Naunyn Schmiedebergs Arch Pharmacol 350:523–528. https://doi.org/10.1007/BF00173022

  41. Krishna KV, Wadhwa G, Alexander A, Kanojia N, Saha RN, Kukreti R, Singhvi G, Dubey SK (2019) Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem Neurosci 10:4124–4135. https://doi.org/10.1021/acschemneuro.9b00343

    CAS  Article  Google Scholar 

  42. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70. https://doi.org/10.1111/ene.13439

    CAS  Article  Google Scholar 

  43. Laserra S, Basit A, Sozio P, Marinelli L, Fornasari E, Cacciatore I, Ciulla M, Türkez H, Geyikoglu F, di Stefano A (2015) Solid lipid nanoparticles loaded with lipoyl-memantine codrug: preparation and characterization. Int J Pharm 485:183–191. https://doi.org/10.1016/j.ijpharm.2015.03.001

    CAS  Article  Google Scholar 

  44. Lee J-H, Park H-KC TG (1999) Development of oral drug delivery system using floating microspheres. J Microencapsul 16:715–729. https://doi.org/10.1080/026520499288663

    CAS  Article  Google Scholar 

  45. Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M, Catenacci L, di Pietra AM, Zecchi V (2011) Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci 44:559–565. https://doi.org/10.1016/j.ejps.2011.10.002

    CAS  Article  Google Scholar 

  46. Madden S, Spaldin V, Park BK (1995) Clinical pharmacokinetics of tacrine. Clin Pharmacokinet 28:449–457. https://doi.org/10.2165/00003088-199528060-00003

    CAS  Article  Google Scholar 

  47. Malekpour-Galogahi F, Hatamian-Zarmi A, Ganji F, Ebrahimi-Hosseinzadeh B, Nojoki F, Sahraeian R, Mokhtari-Hosseini ZB (2018) Preparation and optimization of rivastigmine-loaded tocopherol succinate-based solid lipid nanoparticles. J Liposome Res 28:226–235. https://doi.org/10.1080/08982104.2017.1349143

    CAS  Article  Google Scholar 

  48. Matsunaga S, Kishi T, Nomura I, Sakuma K, Okuya M, Ikuta T, Iwata N (2018) The efficacy and safety of memantine for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 17:1053–1061. https://doi.org/10.1080/14740338.2018.1524870

    CAS  Article  Google Scholar 

  49. Mendes IT, Ruela ALM, Carvalho FC, Freitas JTJ, Bonfilio R, Pereira GR (2019) Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil. Colloids Surf B: Biointerfaces 177:274–281. https://doi.org/10.1016/j.colsurfb.2019.02.007

    CAS  Article  Google Scholar 

  50. Misra S, Chopra K, Sinha VR, Medhi B (2016a) Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 23:1434–1443. https://doi.org/10.3109/10717544.2015.1089956

    CAS  Article  Google Scholar 

  51. Misra S, Chopra K, Saikia UN, Sinha VR, Sehgal R, Modi M, Medhi B (2016b) Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer’s disease. Regen Med 11:629–646. https://doi.org/10.2217/rme-2016-0032

    CAS  Article  Google Scholar 

  52. Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, van Vuuren S, Ndesendo VMK, Toit LC, Iyuke SE, Pillay V (2013) Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int J Pharm 448:267–281. https://doi.org/10.1016/j.ijpharm.2013.03.037

    CAS  Article  Google Scholar 

  53. Nagpal K, Singh SK, Mishra DN (2013) Optimization of brain targeted chitosan nanoparticles of rivastigmine for improved efficacy and safety. Int J Biol Macromol 59:72–83. https://doi.org/10.1016/j.ijbiomac.2013.04.024

    CAS  Article  Google Scholar 

  54. Noetzli M, Eap CB (2013) Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet 52:225–241. https://doi.org/10.1007/s40262-013-0038-9

    CAS  Article  Google Scholar 

  55. Nordberg A, Svensson A-L (1998) Cholinesterase inhibitors in the treatment of Alzheimer’s disease. Drug Saf 19:465–480. https://doi.org/10.2165/00002018-199819060-00004

    CAS  Article  Google Scholar 

  56. Ohnishi A, Mihara M, Kamakura H, Tomono Y, Hasegawa J, Yamazaki K, Morishita N, Tanaka T (1993) Comparison of the pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy young and elderly subjects. J Clin Pharmacol 33:1086–1091. https://doi.org/10.1002/j.1552-4604.1993.tb01945.x

    CAS  Article  Google Scholar 

  57. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010

    CAS  Article  Google Scholar 

  58. Pagar K, Vavia P (2013) Rivastigmine-loaded L-lactide-depsipeptide polymeric nanoparticles: decisive formulation variable optimization. Sci Pharm 81:865–885. https://doi.org/10.3797/scipharm.1211-20

    CAS  Article  Google Scholar 

  59. Palle S, Neerati P (2017) Enhancement of oral bioavailability of rivastigmine with quercetin nanoparticles by inhibiting CYP3A4 and esterases. Pharmacol Rep 69:365–370. https://doi.org/10.1016/j.pharep.2016.12.002

    CAS  Article  Google Scholar 

  60. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21. https://doi.org/10.1016/j.nano.2005.12.003

    CAS  Article  Google Scholar 

  61. Querfurth HW, LaFerla FM (2010) Mechanisms of disease Alzheimer’s disease. N Engl J Med 362:329–344

    CAS  Article  Google Scholar 

  62. Radwan RR, Ghaffar AMA, Ali HE (2019) Gamma radiation preparation of chitosan nanoparticles for controlled delivery of memantine. https://doi.org/10.1177/0885328219890071

  63. Rainer M (1997) Galanthamine in Alzheimer’s disease. A new alternative to tacrine? CNS Drugs 7:89–97. https://doi.org/10.2165/00023210-199707020-00001

    CAS  Article  Google Scholar 

  64. Razay G, Wilcock GK (2008) Galantamine in Alzheimer’s disease. Expert Rev Neurother 8:9–17. https://doi.org/10.1586/14737175.8.1.9

    CAS  Article  Google Scholar 

  65. Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ, Memantine Study Group (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341. https://doi.org/10.1056/NEJMoa013128

    CAS  Article  Google Scholar 

  66. Saladini B, Bigucci F, Cerchiara T, Gallucci MC, Luppi B (2013) Microparticles based on chitosan/pectin polyelectrolyte complexes for nasal delivery of tacrine hydrochloride. Drug Deliv Transl Res 3:33–41. https://doi.org/10.1007/s13346-012-0086-y

    CAS  Article  Google Scholar 

  67. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Jelvehgari M (2017) Thermosensitive in situ nanocomposite of rivastigmine hydrogen tartrate as an intranasal delivery system: development, characterization, ex vivo permeation and cellular studies. Colloids Surf B: Biointerfaces 159:629–638. https://doi.org/10.1016/j.colsurfb.2017.08.031

    CAS  Article  Google Scholar 

  68. Sánchez-López E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC, Camins A, Carmona N, Silva AM, Souto EB, García ML (2018) Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnol 16:1–16. https://doi.org/10.1186/s12951-018-0356-z

    CAS  Article  Google Scholar 

  69. Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166. https://doi.org/10.1038/s41593-018-0325-8

    CAS  Article  Google Scholar 

  70. Sathesh Kumar S, Felix Joe V (2017) Pharmacokinetics of tacrine loaded MPEG-PCL polymeric nanoparticles. Res J Pharm Technol 10:135–140. https://doi.org/10.5958/0974-360X.2017.00030.0

    Article  Google Scholar 

  71. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. https://doi.org/10.15252/emmm.201606210

  72. Shah B, Khunt D, Bhatt H, Misra M, Padh H (2015) Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur J Pharm Sci 78:54–66. https://doi.org/10.1016/j.ejps.2015.07.002

    CAS  Article  Google Scholar 

  73. Sharon, Friedhoff LR (1996) The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US multicentre, randomized, double-blind, placebo-controlled trial. Dement Geriatr Cogn Disord 7:293–303. https://doi.org/10.1159/000106895

    Article  Google Scholar 

  74. Silva S, Marto J, Gonçalves L, et al (2020) Formulation, characterization and evaluation against sh-sy5y cells of new tacrine and tacrine-map loaded with lipid nanoparticles. Nanomaterials 10:. https://doi.org/10.3390/nano10102089

  75. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. https://doi.org/10.1016/j.yexmp.2008.12.004

    CAS  Article  Google Scholar 

  76. Sozio P, Cerasa LS, Laserra S, Cacciatore I, Cornacchia C, di Filippo ES, Fulle S, Fontana A, di Crescenzo A, Grilli M, Marchi M, di Stefano A (2013) Memantine-sulfur containing antioxidant conjugates as potential prodrugs to improve the treatment of Alzheimer’s disease. Eur J Pharm Sci 49:187–198. https://doi.org/10.1016/j.ejps.2013.02.013

    CAS  Article  Google Scholar 

  77. Tamilselvan N, Raghavan CV (2015) Formulation and characterization of anti-Alzheimer’s drug loaded chitosan nanoparticles and its in vitro biological evaluation. J Young Pharm 7:28–35. https://doi.org/10.5530/jyp.2015.1.6

    CAS  Article  Google Scholar 

  78. Wenk GL, Quack G, Moebius HJ, Danysz W (2000) No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life Sci 66:1079–1083. https://doi.org/10.1016/S0024-3205(00)00411-2

    CAS  Article  Google Scholar 

  79. Wilson B, Samanta MK, Santhi K et al (2008a) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70:75–84. https://doi.org/10.1016/j.ejpb.2008.03.009

    CAS  Article  Google Scholar 

  80. Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B (2008b) Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200:159–168. https://doi.org/10.1016/j.brainres.2008.01.039

    CAS  Article  Google Scholar 

  81. Wilson B, Samanta MK, Santhi K, Kumar KPS, Ramasamy M, Suresh B (2010) Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomed Nanotechnol Biol Med 6:144–152. https://doi.org/10.1016/j.nano.2009.04.001

    CAS  Article  Google Scholar 

  82. Wilson B, Samanta MK, Muthu MS, Vinothapooshan G (2011) Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer’s disease. Ther Deliv 2:599–609. https://doi.org/10.4155/tde.11.21

    CAS  Article  Google Scholar 

  83. Yasir M, Sara UVS, Chauhan I, Gaur PK, Singh AP, Puri DA (2018) Solid lipid nanoparticles for nose to brain delivery of donepezil: formulation, optimization by Box–Behnken design, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol 46:1838–1851. https://doi.org/10.1080/21691401.2017.1394872

    CAS  Article  Google Scholar 

Download references

Funding

This work was financed by FEDER—Fundo Europeu de Desenvolimento Regional through the COMPETE 2020—Operational Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia, in a framework of the projects in CINTESIS, R&D Unit (reference UIDB/4255/2020 and iMed.ULisboa (UID/DTP/04138/2019). N.V. also thanks support from FCT and FEDER (European Union), award number IF/00092/2014/CP1255/CT0004. SS thanks FCT for supporting this article with her PhD Grant (PD/BD/135456/2017) and PhD Programme in Medicines and Pharmaceutical Innovation (i3DU) from the University of Lisbon (Portugal) and the University of Porto (Portugal) for all support.

Author information

Affiliations

Authors

Contributions

For the assembly of this review N.V. and A.J.A. had the main idea; S.S performed the literature search, data analysis, and writing; and both N.V. and A.J.A. critically revised the work.

Corresponding author

Correspondence to Nuno Vale.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, S., Almeida, A.J. & Vale, N. Acetylcholinesterase inhibitors and nanoparticles on Alzheimer’s disease: a review. J Nanopart Res 23, 9 (2021). https://doi.org/10.1007/s11051-020-05118-9

Download citation

Keywords

  • Alzheimer’s disease
  • Acetylcholinesterase inhibitors
  • Memantine
  • Nanoparticles
  • Delivery system